Introduction to Logarithms

Introduction to Logarithms

Unit 10 Day 1

Given the following function, make a table & graph $f(x) = 2^x$ and its inverse.

 $f(x) = 2^{x}$ -2 -1 $\rightarrow 0$

Inverse: switch xxy

Is $f(x) = 2^x a$ one-to-one function? Explain your answer.

URD

the horizontal and

vertical line

Based on your answer, what must be true about the inverse of this function?

The inverse is also a function (150)

<u>Defining Logarithmic Equations</u> – The function $y = \log_b x$ is the name we give the inverse of $y = b^x$. For example, $y = \log_2 x$ is the inverse of $y = 2^x$. We can write an **equivalent** exponential equation for each logarithm as follows:

$$y = \log_b x$$
 is the same as $b^y = x$
or
 $f^{-1}(x) = \log_b x$

Now let's write the equation on the previous page as a logarithmic equation.

Logarithmic Equation: $f'(X) = \log X$

You try:

Inverse:
$$f'(x) = \log_{1/2} x$$

Inve	rse:f	(x)=	log,	^ احر
X	У			
<u>х</u> Ч	し			
2	7			
1	D			
1/2	1			
14	2			

Logarithmic Equation: $\int_{-1}^{-1} (\chi) = \log \chi$

Describe the end behavior of the function as $x \to \infty$

Describe the end behavior of the function as $x \to 0$

Summary

Point on every logarithmic graph: (10)

Domain: $(0, \infty)$ Quadrants: I, III

Asymptote: X=0

Range: $(-\infty,\infty)$

Pt. Exp: (0,1)
D: (-2,0)
Q: I,II
R: (0,0)
A: y=0

Let's graph the function $f(x) = log_2(x+2)$ (Hint: What type of transformation will occur with this function? Please write your answer below.)

 $f(x) = log_2 x$

What transformation happened to the function? _

Describe the end behavior of the function as $x \to \infty$

Describe the end behavior of the function as $x \to -2$

y -> - &

Describe what transformations would occur for the graph $f(x) = \log_3(x-4) + 2$ Rt. Hand up 2 For the logarithmic function $f(x) = \log_3(x-4) + 2$, explain why x = 0 is not in its domain.

f(0)=log_3(-4)+2

can't take log of negative

Logarithmic Form of an Equation

General Rule:

Restrictions b: $\begin{array}{c|c} & b > O \\ \hline & c: & C > O \end{array}$

Write in Exponential Form:

1.
$$\log_2 4 = 2$$
 $2^2 = 4$

2.
$$\log_{5} 125 = 3$$
 $5^{3} = 125$

3.
$$\log_{10} 100 = x$$
 $10^{x} = 100$ $x = 2$

Write in Log Form:

5.
$$3^2 = 9$$
 $1099 = 2$

6.
$$10^{-1} = .1$$
 $10^{-1} = .1$

7.
$$4^{\times} = 16$$
 $\log 16 = \times$

5.
$$3^{2} = 9$$
 $1099 = 2$
6. $10^{-1} = .1$ $109 \cdot 1 = -1$
7. $4^{x} = 16$ $109 \cdot 16 = x$
8. $12^{0} = 1$ $109 \cdot 1 = 0$