Sequences and Series

Arithmetic

Geometric

Geometric Series

$$a_n = a_1 + d(n-1)$$

$$S_n = a_1 \left(\frac{1 - r^n}{1 - r} \right)$$

Introduction to Sequences & Arithmetic Sequences											Day .
<u>A Sequence</u>	is an ordere	d set o	of n	umb	ers o	r otl	her i	tems.	Each nu	ımber	in the
sequence is called a <u>ter</u>	<u> </u>	mple, i	n th	e se	equer	nce 4	, 7, 1	0, 13,	16,, †	he se	cond term
is 7. A sequence can be <u>infinite</u> (without end) or <u>finite</u>									(limited		
number of terms). Each term	in the sequence can	be pai	red	wit	hap	ositic	on nu	mber,	and the	ese p	airings
establish a <u>function</u>	whose domain is the	set of	pos	itio	n nun	nber:	s and	whos	e range	is the	e set of
terms, as shown below. The p	osition numbers are	consec	utiv	/e in	tege	rs th	nat t	ypicall	y start	at eit	ther
O or 1. Position number		n	1	2	3	4	5				
	Term of sequence	f(n)	4	7	10	13	16				
For this sequence, we write f(4) = 13, which can be 13, 16 Car	you						ı term	of the	seque	ence is 13."
In this sequence, each term is			viou	ıs te	rm.						
This is an <u>arithmetic</u> differ by the same number, co	segu	enc.	e			be :0).	caus	e succ	essive 1	terms	S
3 is called the <u>Common</u>		difference (d)								α,	$a - a_1$
4 is called the 1st 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		term (a1)									
7 is called the											
16 is called the 5 th			te	<u></u>	V		(c	1 ₅)			

Now, we'll find a formula (rule) for the n^{th} term (a_n) .

1st term:
$$a_1 = \frac{4+3(0)}{4+3(0)} = 4$$

2nd term: $a_2 = \frac{4+3(1)}{4+3(2)} = 7$
3nd term: $a_3 = \frac{4+3(2)}{4+3(2)} = 10$
4th term: $a_4 = \frac{4+3(3)}{4+3(4)} = 16$
5th term: $a_5 = \frac{4+3(4)}{4+3(4)} = 16$

Arithmetic Rule: $a_n = a_n + d(n-1)$ In Function Notation: f(n) = f(1) + d(n-1)

 n^{th} term: $a_n = \frac{4 + 3(n-1)}{m}$

3n+1

b. 3/4,3/8,3/16,3/32,3/64...

1. Is the sequence arithmetic? If so, find d, an n^{th} term formula (a_n) and the next three terms.

$$d = -.7$$

$$a_{n} = a_{1} + d(n-1)$$

$$a_{n} = 1.9 - .7(n-1)$$

$$a_{n} = 1.9 - .7(b-1) = -1.6$$

$$a_{n} = 1.9 - .7(7-1) = -2.3$$

$$a_{8} = 1.9 - .7(8-1) = -3$$

Not anthrmetic but it is a sequence The previous examples used an $\frac{1}{2}$ plicit Formula which defines the nth term of a sequence as a function of n. Sequences can also be described by using a Recursive Formula which defines the nth term of a sequence as a function of one or more previous terms. On the previous page, we wrote the explicit formula f(n) = 4 + 3(n-1) for the arithmetic sequence 4, 7, 10, 13, 16 ...

Use the following recursive formula to find the first 4 terms of the same arithmetic sequence. f(n) = f(n-1) + 3 with f(1) = 4 f(2) = f(1) + 3 f(3) = f(2) + 3 f(4) = f(3) + 3

2. Find an explicit and recursive formula rule for the nth term (a,). Then find the next term with your recursive formula.

recursive formula.

a. 9.2, 9.15, 9.1, 9.05, 9...

$$A_{0} = A_{1} + d(n-1)$$

$$A_{0} = 9.2 - .05(n-1)$$

$$A_{1} = A_{0} - .05$$

$$A_{1} = A_{0} - .05$$

$$A_{2} = A_{3} - .05$$

$$A_{3} = A_{3} - .05$$

$$A_{4} = A_{3} - .05$$

$$A_{5} = A_{5} - .05$$

$$A_{6} = A_{5} - .05$$

recursive formula.

a. 9.2, 9.15, 9.1, 9.05, 9...

E:
$$a_n = a_1 + d(n-1)$$
 $a_n = 9 \cdot 2 - .05(n-1)$

E: $a_n = a_1 + d(n-1)$
 $a_n = \frac{4}{3} + \frac{1}{3}(n-1)$

P: $a_n = \frac{4}{3} + \frac{1}{3}(n-1)$

R: $a_n = a_1 + d(n-1)$
 $a_n = \frac{4}{3} + \frac{1}{3}(n-1)$

R: $a_n = a_{n-1} + \frac{1}{3}$
 $a_n = a_{n-1} + \frac{1}{3}$
 $a_n = a_n +$

3. Find the 12^{th} term of the arithmetic sequence by using a formula.

a. 32, 25, 18, 11, 4...
$$d = -7$$

 $G_0 = G_1 + d(n-1)$
 $G_{12} = 32 - 7(n-1)$
 $G_{12} = 32 - 7(12-1)$
 $G_{13} = 32 - 77$
 $G_{14} = -7$

a formula.
b. -9, -7, -5, -3, -1...
$$d = 2$$

 $a_n = q_1 + d(n-1)$
 $a_n = -9 + a(n-1)$
 $a_n = -9 + a(n-1)$
 $a_n = -9 + a(n-1) = -9 + a = 13$

4. Find the 6th term of the arithmetic sequence using the given terms and a formula. De b first.

The order for the difference using
$$a_1 a_8 = -4$$
 and $a_{11} = 14$
 $A_{11} = a_8 + 3d$
 $A_{12} = -4 + 3d$
 $A_{13} = 3d$
 $A_{14} = -4 + 3d$
 $A_{18} = 3d$
 $A_{18} = 3d$
 $A_{18} = 3d$
 $A_{18} = 3d$

$$\begin{array}{c}
 q_8 = q_6 + 2d \\
 -4 = q_6 + 2(6) \\
 -4 = q_6 + 12 \\
 \hline
 -16 - q_6
 \end{array}$$

$$\begin{array}{c}
 q_8 = q_8 - 2d \\
 \hline
 06 = q_8 - 2d
 \end{array}$$

b.
$$a_3 = 20.5$$
 and $a_8 = 13$
 $a_8 = a_3 + 5d$
 $a_8 = a_0.5 + 3d$
 $a_8 = a_0.5 + 3d$
 $a_8 = a_0.5 + 3(-1.5)$
 $a_8 = a_0.5 + 3(-1.5)$