Registration for the PSAT ends on September 11th. Students can register online by going to the Guidance website and following the PSAT registration link. 11th graders planning on attending a 4 year college are encouraged to sit for the exam. 10th graders enrolled in Algebra 2 are also eligible to sit for the exam. The exam will be Wednesday, October 10th. The cost is \$16.

You will study

- Operations & multiplying with polynomials
- · Long division
- Factoring polynomial expressions
- The zeros of polynomial functions
- The roots of polynomial equations
- The intercepts of polynomial graphs
- Solving polynomial equations by factoring
- · Simplifying Radicals and the Discriminant
- Solving quadratic equations with the Quadratic Formula
- Solving quadratic equations by Completing the Square

Unit 1

Polynomials

1-1: Operations/Multiplying with Polynomials

Term - a number or product of numbers and variables: 3xy

Monomial - $a \text{ single term: } 3, 3xy^2$

Polynomial - one or more terms combined as a sum or difference of terms: $3 + 3xy^2$

Classifying Polynomials

• A polynomial can be named by its # of terms and degree

Classifying Polynomials by Degree				I,
Name	Degree	Example	# Terms	nonomial
Constant	0	-4x9	, , ,	I .
Linear	1	x – 4	2 1	married
Quadratic	2	$x^2 + 3x - 1$	3	tri nomia
Cubic	3	$x^3 + 2x^2 + x + 1$	4	
	'			الهنسم

Standard Form

Adding and Subtracting Polynomials

Add or subtract. Write your answer in standard form. "Combine like terms"

1.
$$(3x^2+x+7)+(14x^3+x^2-x+2)$$

$$3x^{2}+x+7+14x^{3}+x^{2}-x+2$$

2.
$$(2x^3+9-x)+(5x^2+4+7x+x^3)$$

$$3x^3 + 5x^2 + 6x + 13$$

3.
$$(1-x^2) - (3x^2 + 2x - 5)$$

 $1-x^3 - 3x^3 - 2x + 5$

4.
$$(5x^3+6x^2+12)-(15x^2+3x-2)$$

$$5x^3 - 9x^2 - 3x + 14$$

5. Subtract
$$(x^2-x+6)$$
 from $(3-2x^2)$.

(3-2x²) - (x^2-x+6)

$$(3-2x^2) - (x^2-x+6)$$

$$3-2x^2-x^2+x-6=-3x^2+x-3$$

6. From
$$(x^2 - x + 6)$$
 subtract $(3 - 2x^2)$.

$$(x^2-x+6)-(3-2x^2)$$

$$3x^{2} - x + 3$$

Multiplying Polynomials

• Remember $(x^a)(x^b) = x^{a+b}$

1.
$$\mathbf{x}(\mathbf{x}^3) = \mathbf{x}^4$$

2.
$$3x^2(x^5) = 3x^7$$

3.
$$xy(7x^2) = 7x^3y$$

4.
$$3y^2(-3y) = -9y^3$$

 $\underline{\text{Multiplying a monomial and a polynomial:}}$

To multiply a polynomial by a monomial, use the <u>distributive</u> property and the properties of exponents.

1.
$$3x^2(x^3+4) = 3x^5 + 12x^2$$

2.
$$ab(a^3+3ab^2-b^3) = a^4b + 3a^2b^3 - ab^4$$

You try these:

3. $3cd^2(4c^2d-6cd+14cd^2)$

4. $-x^2y(6y^3+y^2-28y+30)$

$$-6x^{2}y^{3}-x^{2}y^{3}+38x^{2}y^{2}-30x^{2}y$$

Multiplying a binomial and a binomial:

To multiply a binomial by a binomial, use the distributive property and multiply each term in the second polynomial by each term in the first. This is <u>double distribution</u>.

1.
$$(2x-3)(x+5)$$

 $2x^{2} + 10x - 3x - 15$
 $2x^{2} + 7x - 15$

You try:

2.
$$(4a-3b)(a+3b)$$

 $4a^2 + 12ab - 3ba - 9b^2$
Multiplying polynomials: $4a^2 + 9ab - 9b^2$

To multiply two polynomials, use <u>double distribution</u>. Remember this uses the distributive property to multiply each term in the second polynomial by each term in the first.

Examples:

1.
$$(a-3)(2-5a+a^2)$$

 $2a-5a^2+a^3$
 $-6+15a-3a^2$
 $9^3-89^2+17a-6$

2.
$$(1+3x-x^2)(x-2)$$

You try these:

3.
$$(y^2 + 2y - 12)(x + 2)$$

4.
$$(2x-3)(x^5-4x^3+7)$$

Multiply $(x-1)(x^4+x^3+x^2+x+1)$ and combine like terms. Explain how you reached your answer.

Your assignment is Homework Worksheet 1-1 in your homework packet