HW 3 - 2: Answers

1.
$$x = 6$$
, $y = 1$

2.
$$x = -2$$
, $y = -3$, $z = 2$

3.
$$x = 2$$
, $y = 5$, $z = -1$

Do the entire first page of today's notes with your partner

- 4. There will be 16 roses, 6 lilies, and 2 tulips in her basket.
- 5. He would spend \$11 on the requested order.

Change on tonight's HW. Replace #2 with HWK 3-5 #1 Solve the following systems.

1.
$$(5x + 2y = 32)(-3)$$

 $6x + 6y = 42$
 $-15x - 6y = -96$
 $6x + 6y = 42$
 $-9x = -54$
 $x = 6$

$$5(6) + 2y = 32$$

 $2y = 2$
 $y = 1$

3.
$$7x + y + 3z = 4$$

 $2y + 3z = 7$
 $x - y - z = -2$
 $2x + 2 + 3z = 4$
 $2x + 2 + 3z = 4$
 $2x + 2 + 3z = 4$
 $2x + 2 + 3z = 2$
 $2x + 2 + 2 + 3z = 2$
 $2x + 2 + 2 + 3z = 2$
 $2x + 2 + 2 + 3z = 2$
 $2x + 2 + 2 + 3z = 2$
 $2x + 2 + 2 + 3z = 2$
 $2x + 2 + 3z = 2$

$$2y + 3(-1) = 7$$

 $2y = 10$
 $y = 5$
 $x - 5 + 1 = -2$
 $x = 2$
 $y = 5$
 $y = 5$

4. A florist is making a bouquet of flowers. She has \$58 to spend (including tax) and wants 24 flowers in the bouquet. Roses are \$3 each, tulips cost \$2 each, and lilies cost \$1 each. She wants to have twice as many roses as the other two flowers combined the bouquet. How many of each flower type will be in her bouquet?

$$X= \# roses$$
 $X+y+z=24$ There will be livroses? $Y= \# tulips$ $Z= \# tul$

- Gramps loves his sweets! He has been to the candy shop 3 times this month! On his first visit he bought 1 pound of jelly beans and 2 pounds of chocolates for \$7. On his second visit they were out of chocolates so he bought 1 pound of jelly beans and 2 pounds of caramels for \$5. On his third visit, they had replenished the chocolates so he went all out and bought 1 pound of jelly beans, 3 pounds of chocolates and 2 pounds of caramels all for \$14. How much would he spent on two
- X = cost jelly beans/pound pounds of jelly beans, I pound of charolates
 y = cost chocolates/pound and 3 pounds of carameis?

 Z = cost carameis/pound 2(1) + 3 + 3(2) = 11 Let

$$X + 2y = 7$$

 $X + 2z = 5$
 $X + 3y + 2z = 14$
 $-x - 2z = -5$
 $x + 3y + 2z = 14$
 $x + 3y + 2z = 14$

$$2(1) + 3 + 3(2) = 11$$

He would sperid

\$11 on the requested order

U3D3

Solving Systems Graphically

Warm-Up: y=mx+bGraph: $x+y=6 \Rightarrow y=-x+6$ -3x+y=2 y=3x+0 $m=\frac{3}{1}$ b=0 $m=\frac{3}{1}$ b=2List of points

1. **stprints* $\{(1,5)\}$ "ebraically"

$$0(-1) \Rightarrow -x - y = -6
2 -3x + y = 2
-4 -4
x = 1 \frac{2}{5}(1,5)\frac{3}{5}$$

For the next two examples, $\underline{x+y=6}$ and a second equation have been graphed for you. Determine the solution for each system.

α.

b.

an infinite # of solutions

If you were to graph a circle and a line on the same set of axes, how many solutions are possible? Sketch each possibility.

How about a parabola and a line? Again, sketch each possibility.

The standard form of an equation for a circle is: $(x - h)^2 + (y - k)^2 = r^2$

Where the center is: $\frac{h_1 k}{x}$ And the radius is: $\frac{x}{x}$ = \sqrt{x}

Graph the following circles:

$$D_{c}$$
 question 1 from D_{ay} 5
1. $V = -2X + 3$

Do question 1 from Day 5
1.
$$y = -2x + 3$$

 $y = x^2 - 6x + 3$

On the same set of axis (above) graph:

1.
$$4x + 3y = 0$$

Where do they intersect?

2.
$$x-y=3$$
 $-y=-x+3$
 $y=x-3$
 $m=\frac{1}{2}$ $b=-3$
 $\{(0,-3),(2,-1)\}$

Review Completing the Square. Set up. Do not solve.

$$x^{2} + 4x = 6$$

$$x^{2} + 4x + 4y = 6 + 44$$

$$(x+3)(x+2) = 10$$

$$(x+2)^{2} = 10$$

Rewrite the equation of the circle by completing the square in both x and y. Describe and graph the circle represented by the equation.

4.
$$x^{2}+y^{2}-6x+4y-3=0^{2}$$

 $x^{2}-6x+9+y^{2}+4y+4=3+9+4$
 $(x-3)^{2}+(y+2)^{2}=16$
 $2xx^{2}x^{2}=16$
 $2xx^{2}x^{2}=16$
 $2xx^{2}x^{2}=16$
 $2xx^{2}x^{2}=16$
 $2xx^{2}x^{2}=16$
 $2xx^{2}x^{2}=16$

