HW 5-6

1. $4(x-1)^{2}(x+1)^{2}$
2. $5 x^{2}(x-5)\left(x^{2}+5 x+25\right)>-1$
3. $(x-2 y)(x+2 y)\left(x^{2}+4 y^{2}\right)$
4. $(x+y+z)(x+y-z)$
5. $\{ \pm 2 \mathrm{i} \sqrt{2}, \pm 2 \sqrt{2}\}$
6. $\{-2, \pm 4\}$
7. $\{0, \pm 1,2\}$

8. $\{ \pm i \sqrt{2}, \pm 1\}$

In 1-4, Factor Completely.

1. $4 x^{4}-8 x^{2}+4$
$4\left(x^{4}-2 x^{2}+1\right)$
2. $5 x^{5}-625 x^{2}$
$5 x^{2}\left(x^{3}-125\right)$
$=4\left(x^{2}-1\right)\left(x^{2}-1\right)$
$=5 x^{2}(x-5)\left(x^{2}+5 x+25\right)$
$=4(x-1)(x+1)(x-1)(x+1)$
$=4(x-1)^{2}(x+1)^{2}$
3. $x^{4}-16 y^{4}$
$\left.=\left(x^{2}-1\right)^{2}\right)\left(x^{2}+4 y^{2}\right)$
4. $(x+y)^{2}-z^{2}$
Let $u=x+y$
$y^{2}-z^{2}=(u+z)(u-z)$

$$
(x+y+z)(x+u-z)
$$

In 5-8, write in factored form and find the zeros.

$$
\text { 5. } \begin{aligned}
& f(x)=x^{4}-64 \\
& f(x)=\left(x^{2}+8\right)\left(x^{2}-8\right) \\
& 0=\left(x^{2}+8\right)\left(x^{2}-8\right) \\
& \sqrt{x^{2}} \sqrt{28} \quad \sqrt{x^{2}}-\sqrt{8} \\
& x= \pm \sqrt[{i \sqrt{2}}]{2} \\
& x= \pm 2 \sqrt{2} \quad x= \pm 2 \sqrt{2} \\
&\{ \pm 2 i \sqrt{2}, \pm 2 \sqrt{2}\}
\end{aligned}
$$

7. $f(x)=x^{4}-2 x^{3}-x^{2}+2 x$

$$
\begin{aligned}
& f(x)=x^{3}(x-2)-x(x-2) \\
& f(x)=\left(x^{3}-x\right)(x-2) \\
& f(x)=x\left(x^{2}-1\right)(x-2) \\
& f(x)=x(x-1)(x+1)(x-2) \\
& 0=x(x-1)(x+1)(x-2) \\
& x=0, x=1, x=-1, x=2 \\
& \quad\{0, \pm 1,2\}
\end{aligned}
$$

6.

$$
\begin{gathered}
f(x)=x^{3}+2 x^{2}-16 x-32 \\
f(x)=x^{2}(x+2)-16(x+2) \\
f(x)=(x+2)\left(x^{2}-16\right) \\
f(x)=(x+2)(x-4)(x+4) \\
0=(x+2)(x-4)(x+4) \\
x=-2, x=4, x=-4 \\
\{-2, \pm 4\}
\end{gathered}
$$

8.

$$
\begin{aligned}
& f(x)=x^{4}+x^{2}-2 \\
& f(x)=\left(x^{2}+2\right)\left(x^{2}-1\right) \\
& f(x)=\left(x^{2}+2\right)(x+1)(x-1) \\
& 0=\left(x^{2}+2\right)(x+1)(x-1) \\
& x^{2}+2=0 x+1=0 x-1=C \\
& \sqrt{x^{2}}=-\sqrt{2} \\
& x= \pm i \sqrt{2} x=-1 \quad x=1 \\
& \{ \pm i \sqrt{2},-1,1\}
\end{aligned}
$$

Increasing/Decreasing

Explain how you would sketch $P(x)=x^{2}(x-1)^{3}(x+1)$ without a graphing calculator.

Sketch a graph that has 2 real zeros and 2 imaginary zeros.

What do you think it means if a function is increasing? Decreasing?

Interval Notation A notation for representing an interval as a pair of numbers. The numbers are the endpoints of the interval. Parentheses and/or brackets are used to show whether the endpoints are excluded or included. For example, $[2,7)$ is the interval of real numbers between 2 and 7 , including 2 and excluding 7 .

Increasing \rightarrow a function f is increasing on an interval if, for any 2 points in the interval, a positive change in x results in a positive change for $f(x)$.

Decreasing \rightarrow a function f is decreasing on an interval if, for any 2 points in the interval, a positive change in x results in a negative change for $f(x)$.

* When determining increasing/decreasing we are concerned with the X -

VALUES!!!
And all intervals are written in (,) form

* When determining increasing/decreasing we are concerned with the X - VALUES!!! Where is the graph at right increasing/decreasing?

Increasing:

$(b, c),(e, f),(g, i)$

Decreasing?
$(a, b),(c, e),(f, g)$

Relative Maximum \longrightarrow of a function f is a value $f(c)$ that is >all range values of f on some interval containing c.

Relative Minimum \longrightarrow of a function f is a value $f(c)$ that is < all range values of f on some interval containing c.
Where are the relative minimums and maximums from the graph on the previous page? (shown again here)

Minimums:

Maximums: \qquad

For each of the following, determine the intervals on which the graph is increasing and decreasing.
Find all relative minima and maxima.

* When determining increasing/decreasing we are concerned with the X - VALUES!!!

1.

Decreasing: $(-2, \infty)$
Rel Min:

Rel Max:

Describe the behavior of the above functions as x approaches positive and negative infinity

$$
x \rightarrow \infty \quad \frac{\text { The graph is decreasing }}{y \rightarrow-\infty}
$$

$$
x \rightarrow-\infty \quad y \rightarrow-\infty
$$

