HW 5 - 6
1.
$$4(x - 1)^{2}(x + 1)^{2}$$

2. $5x^{2}(x - 5)(x^{2} + 5x + 25)$
3. $(x - 2y)(x + 2y)(x^{2} + 4y^{2})$
4. $(x + y + z)(x + y - z)$
5. $\{\pm 2iJ2, \pm 2J2\}$
6. $\{-2, \pm 4\}$
7. $\{0, \pm 1, 2\}$
8. $\{\pm iJ2, \pm 1\}$

In 1 - 4, Factor Completely.

1.
$$4x^{4} - 8x^{2} + 4$$

 $4(x^{4} - 2x^{2} + 1)$
 $= 4(x^{2} - 1)(x^{2} - 1)$
 $= 4(x - 1)(x + 1)(x - 1)(x + 1)$
 $= 4(x - 1)^{2}(x + 1)^{2}$

In 5 - 8, write in factored form and find the zeros.

5.
$$f(x) = x^{4} - 64$$

 $f(x) = (x^{2} + 8)(x^{2} - 8)$
 $0 = (x^{2} + 8)(x^{2} - 8)$
 $\sqrt{x^{2}} = \sqrt{x^{2}} + 8 = \sqrt{x^{2}} + 8$
 $\sqrt{x^{2}} = \sqrt{x^{2}} + 8 = \sqrt{x^{2}} + 8$
 $\sqrt{x^{2}} = \sqrt{x^{2}} + 8 = \sqrt{x^{2}} + 8$
 $\sqrt{x^{2}} = \sqrt{x^{2}} + 2\sqrt{2}$
 $\sqrt{x^{2}} = \sqrt{x^{2}} + 2\sqrt{2}$

7. $f(x) = x^4 - 2x^3 - x^2 + 2x$ $f(x) = x^3(x-2) - x(x-2)$ $f(x) = (x^3 - x)(x-2)$ $f(x) = x(x^2 - 1)(x-2)$ f(x) = x(x-1)(x+1)(x-2) 0 = x(x-1)(x+1)(x-2) x = 0, x = 1, x = -1, x = 2f(x) = x(x-1)(x+1)(x-2)

6.
$$f(x) = x^{3} + 2x^{2} - 16x - 32$$

$$f(x) = \chi^{2} (X+2) - 16(X+2)$$

$$f(x) = (X+2)(X^{2} - 16)$$

$$f(x) = (X+2)(X-4)(X+4)$$

$$0 = (X+2)(X-4)(X+4)$$

$$\chi = -2, X = 4, X = -4$$

$$\xi = 2, \pm 4$$

8.
$$f(x) = x^{4} + x^{2} - 2$$

$$f(X) = (X^{2} + 2)(X^{2} - 1)$$

$$f(X) = (X^{2} + 2)(X + 1)(X - 1)$$

$$0 = (X^{2} + 2)(X + 1)(X - 1)$$

$$X^{3} + 2 = 0 \quad X + 1 = 0 \quad X - 1 = 0$$

$$X^{3} + 2 = 0 \quad X + 1 = 0 \quad X - 1 = 0$$

$$X^{3} + 2 = 0 \quad X + 1 = 0 \quad X - 1 = 0$$

$$X^{3} + 2 = 0 \quad X + 1 = 0 \quad X - 1 = 0$$

$$X^{3} + 2 = 0 \quad X + 1 = 0 \quad X - 1 = 0$$

$$X^{3} + 2 = 0 \quad X + 1 = 0 \quad X - 1 = 0$$

$$X^{3} + 2 = 0 \quad X + 1 = 0 \quad X - 1 = 0$$

$$X^{3} + 2 = 0 \quad X + 1 = 0 \quad X - 1 = 0$$

$$X^{3} + 2 = 0 \quad X + 1 = 0 \quad X - 1 = 0$$

$$X^{3} + 2 = 0 \quad X + 1 = 0 \quad X - 1 = 0$$

$$X^{3} + 2 = 0 \quad X + 1 = 0 \quad X - 1 = 0$$

$$X^{3} + 2 = 0 \quad X + 1 = 0 \quad X - 1 = 0$$

$$X^{3} + 2 = 0 \quad X + 1 = 0 \quad X - 1 = 0$$

$$X^{3} + 2 = 0 \quad X + 1 = 0 \quad X - 1 = 0$$

$$X^{3} + 2 = 0 \quad X + 1 = 0 \quad X - 1 = 0$$

$$X^{3} + 2 = 0 \quad X + 1 = 0 \quad X - 1 = 0$$

$$X^{3} + 2 = 0 \quad X + 1 = 0 \quad X - 1 = 0$$

$$X^{3} + 2 = 0 \quad X + 1 = 0 \quad X - 1 = 0$$

$$X^{3} + 2 = 0 \quad X + 1 = 0 \quad X - 1 = 0$$

$$X^{3} + 2 = 0 \quad X + 1 = 0 \quad X - 1 = 0$$

$$X^{3} + 2 = 0 \quad X + 1 = 0 \quad X - 1 = 0$$

$$X^{3} + 2 = 0 \quad X + 1 = 0 \quad X - 1 = 0$$

$$X^{3} + 2 = 0 \quad X + 1 = 0 \quad X - 1 = 0$$

$$X^{3} + 2 = 0 \quad X + 1 = 0 \quad X - 1 = 0$$

Explain how you would sketch $P(x) = x^2(x - 1)^3(x + 1)$ without a graphing calculator.

Sketch a graph that has 2 real zeros and 2 imaginary zeros.

What do you think it means if a function is increasing? Decreasing?

Interval Notation A notation for representing an interval as a pair of numbers. The numbers are the endpoints of the interval. Parentheses and/or brackets are used to show whether the endpoints are excluded or included. For example, [2, 7) is the interval of real numbers between 2 and 7, including 2 and excluding 7.

- Increasing \rightarrow a function f is <u>increasing</u> on an interval if, for any 2 points in the interval, a positive change in x results in a positive change for f(x).
- Decreasing \rightarrow a function f is <u>decreasing</u> on an interval if, for any 2 points in the interval, a positive change in x results in a negative change for f(x).
- * When determining increasing/decreasing we are concerned with the X -VALUES!!! And all intervals are written in (,) form

* When determining increasing/decreasing we are concerned with the X - VALUES!!!

Where is the graph at right increasing/decreasing?

Relative Maximum \longrightarrow of a function f is a value f(c) that is > all range values of f on some interval containing c.

Relative Minimum \longrightarrow of a function f is a value f(c) that is < all range values of f on some interval containing c.

Where are the relative minimums and maximums from the graph on the previous page? (shown again here)

Mimimums: $b_1e_1g_$ Maximums: $a_1c_1f_$	a b c e f h i
,	*

For each of the following, determine the intervals on which the graph is increasing and decreasing.

Find all relative minima and maxima.

 \star When determining increasing/decreasing we are concerned with the X - VALUES!!!

1.	↑ ^Y	
		Increasing: $(-\infty, -2)$
		Decreasing: $(-2,\infty)$
× -2		Rel Min: <u>None</u>
		Rel Max: (-2,3)

Describe the behavior of the above functions as x approaches positive and negative infinity

$x \rightarrow \infty$	The graph is decreasing y -> - =
$x \rightarrow -\infty$	<u>y</u> -> - ~