- Homework 7-1 1. B because Pyth. Thm. doesn't work
 - 2. 22.7 ft
 - 3. 10 miles
 - 4. 12/13
 - 5. a = 9.0, c = 19.3
 - 6. 12.3 ft
 - 7. 25.2 m
 - 8. see next slide

12 8. 48.8°

Algebra 2 Homework 7-1

1. Which of the following sets of side lengths cannot form a right triangle? Explain why.

2. A 29-foot ladder leans against a wall. If the base of the ladder is 18 feet from the wall, to the nearest tenth, how far up the wall is the top of the ladder?

$$x^{2} + 18^{2} = 29^{2}$$

 $x^{2} + 324 = 841$
 $x^{2} = 517$
 $x = 22.7 \text{ ft.}$

3. To get from his house to the grocery store, Tom must drive 8 miles directly west and then 6 miles directly south. If he were to travel by helicopter, how far is Tom's house from the grocery store?

$$6^{2} + 8^{2} = x^{2}$$
 $100 = x^{2}$
 $10 = x$

In a right triangle with acute angles C and B, the value of $sin(B) = \frac{15}{39}$. Find the value of sin(C). Express your answer as a fraction in the value of $sin(B) = \frac{15}{39}$.

Express your answer as a fraction in lowest terms.

$$15^{2} + \chi^{2} = 39^{2}$$

$$225 + \chi^{2} = 1521$$

$$\sqrt{\chi^{2}} = \sqrt{1296}$$

$$\chi = 36$$

5. What are the lengths of sides a and c in the triangle below? State your answers to the nearest tenth.

6. A painter uses a 15-foot ladder. When he rests the top of the ladder against the wall, the ladder makes a 55° angle with the floor. How far up the wall does the top of the ladder reach? Round our answers to the nearest tenth of a foot.

$$\sin 55^{\circ} = \frac{x}{15}$$

 $\chi = 15 \sin 55^{\circ} = 12.3 \text{ ft}$

7. Carrie measures the angle from the ground to the top of a tree as 40°. If she is 30 meters from the base of the tree, to the nearest tenth, how tall is the tree?

For the following angles:

- a. Sketch the angle on standard position
- b. Determine which quadrant the angle terminates in

Day 2 – Co-Terminal Angles, Quadrantals and the Unit Circle

Co-terminal Angles: angles that share the same __terminal side

To find positive and negative co-terminal angles, add and subtract 360° to/from the angle. For example, two of the co-terminal angles for 70° are:

Find a positive and negative angle co-terminal with an angle of 120°

You try:

- a. Determine the quadrant in which the angle lies.
- b. Find the measures of a positive and negative angle that are coterminal with the given angle.

- 4. The terminal side of $\angle \theta$ passes through the point (4, 3). What are the sine, cosine and tangent of $\angle \theta$? Also, find m $\angle \theta$.
 - * Hint: Draw the angle in standard position first.

$$sin(\theta) = \frac{3}{5}$$

$$cos(\theta) = 4/5$$

$$tan(\theta) = \frac{3}{4}$$

Quadrantal Angles and the Unit Circle

Unit Circle →

$$sin(\theta) = \frac{9}{7} = 4$$

$$cos(\theta) = \frac{x}{1} = x$$

$$tan(\theta) = \frac{y}{x} = \frac{sin(\theta)}{\cos(\theta)}$$

Coordinates of P: $(\cos(\theta), \sin(\theta))$

