5.
$$\frac{3x^3-4x^2-x+x+6}{-3x^4-12x^3}$$

 $\frac{-3x^4-12x^3}{-4x^3-25x^2-6x+14}$
 $\frac{-4x^3-25x^2-6x+14}{-4x^3+24x^2}$
 $\frac{-4x^3+24x^2}{-x^2-6x+14}$

$$\frac{3x^{3}-35x^{3}+16x+48}{-3x^{4}-3x^{3}-35x^{3}+16x+48}$$

$$\frac{3x^{3}+3x^{3}}{-33x^{3}+16x+48}$$

$$\frac{3x^{3}+3x^{3}}{-33x^{3}+33x}$$

$$\frac{33x^{3}+3x^{3}}{-48x+48}$$

$$\frac{3x^{3}-35x^{3}+16x+48}{-48x+48}$$

$$\frac{3x^{3}-35x^{3}+16x+48}{-48x+48}$$

$$\frac{3x^{3}-35x^{3}+16x+48}{-33x^{3}+33x}$$

$$\frac{48x+48}{-48x+48}$$

$$\frac{3x^{3}-35x^{3}+16x+48}{-48x+48}$$

Regents Review #6 - Rationals & Functions

Warm-up: The expression $\frac{6x^3 + 17x^2 + 10x + 2}{2x + 3}$ equals:

1.
$$3x^2 + 4x - 1 + \frac{5}{2x + 3}$$

2. $6x^2 + 8x - 2 + \frac{5}{2x + 3}$
3. $6x^2 - x + 13 - \frac{37}{2x + 3}$
4. $3x^2 + 13x + \frac{49}{2} + \frac{151}{2x + 3}$

12
Solving Rational Equations: Review section 15 Fractional Equations from your Review Packet.

Example: Solve for x.

$$\frac{x}{x-2} - \frac{3}{3x+2} = \frac{8}{3x^2 - 4x - 4}$$

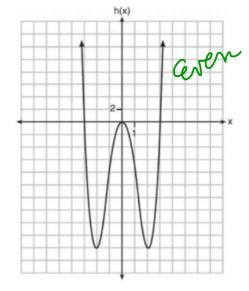
3x+2+0 3x+2 x+3 x+3x+3

 $\begin{array}{l}
x(3x+2) - 3(x-2) &= 8 \\
3x^2 + 2x - 3x + 6 - 8 &= 0 \\
3x^2 - x - 2 &= 0 \\
(3x+2)(x-1) &= 0
\end{array}$

$$\begin{array}{c|c}
\hline
X = -2/3 & X = 1 \\
\hline
\text{pollet}
\end{array}$$

213

Fix this typo from Review Packet:


Even \rightarrow Symmetrical with respect to **y**-axis f(-x) = f(x); same

Even and Odd Functios: Review section & Even and Odd from your Review Packet.

Functions f, g, and h are given below.

$$f(x) = \sin(2x)$$

$$g(x) = f(x) + 1$$
noither

Which statement is true about functions f, g, and h?

- 1. f(x) and g(x) are odd, h(x) is even
- 2. f(x) and g(x) are even, h(x) is odd
- 3. f(x) is odd, g(x) is neither, h(x) is even
 - 4. f(x) is even, g(x) is neither, h(x) is odd

Regents Review #7 -

- · Inverse of functions
- Sequence and Series (Explicit/Recursive)
- Summation Notation

Finding an Inverse:
A. From a table: Switch X and y coordinates
B. From a graph: reflection across the line $\underline{\hspace{1cm}} \underline{\hspace{1cm}} \underline{\hspace{1cm}} \underline{\hspace{1cm}} \underline{\hspace{1cm}} \underline{\hspace{1cm}}$
× C. From a function:
a. Replace f(x) with
b. Switch the X and y
c. Solve for $\frac{y}{f'(x)}$ (only if it is a function)
d. Replace y with $\frac{f(X)}{f(X)}$ (only if it is a $\frac{f(X)}{f(X)}$)
D. The inverse of an exponential function is a function.
Sequence and Series:

A sequence is a list of numbers, whereas a series is the SLM of the list of numbers.

Arithmetic Sequence Formula: $C_{\eta} = q + d(\eta) + on$ REF SHEET!

Geometric Sequence Formula: $C_{\eta} = q + d(\eta) + on$ REF SHEET!

Geometric Series Formula: $C_{\eta} = q + d(\eta) + on$ REF SHEET!

Explicit Formula: based only on the term number (n). Ex:

Recursive Formula: based on the previous term(s). and means the term before an.

You must have a previous term(s) (such as a_1) in order to be able to write a recursive formula.

 $ex: Q = 7 \qquad Q_0 = 3a + 2$

1. The population of Jamesburg for the years 2010 - 2013, respectively, was reported as follows:

250,000,

250,937

251,878

252,822

How can this sequence be recursively modeled?

$$\mathbf{j}_{n} = 250,000(1,00375)^{n-1}$$

$$\mathbf{j}_{n} = 250,000 + 937^{n-1}$$

$$\mathbf{j}_{n} = 250,000$$

$$\mathbf{j}_{n} = 1,00375 \mathbf{j}_{n-1}$$

$$\mathbf{j}_{n} = 250,000$$

$$\mathbf{j}_{n} = 250,000$$

$$\mathbf{j}_{n} = 37$$

Q 8 O_{10} 2. The eighth and tenth terms of a sequence are 64 and 100. If the sequence is either arithmetic or geometric, the ninth term can **NOT** be Λ

$$\frac{6}{9_{10}} = 9_{8} r^{2}$$

$$100 = 64 r^{2}$$