

Oct 19-7:25 PM

Polynomial Functions

Polynomial in 1 variable:

$$a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + ... a_{n-1} x + a_n$$

The <u>degree</u> of the polynomial is the greatest exponent of the variable.

The <u>leading coefficient</u> is the one with the degree variable.

$$3x^3 + 5x^2 + 7$$
 degree = $\frac{3}{3}$ leading coefficient = $\frac{3}{3}$

$$2w^2 + 7w - 4w^5 + w^4$$
 degree = $\frac{5}{100}$ leading coefficient = $\frac{-4}{100}$

Oct 18 - 8:49 AM

<u>Fundamental Theorem of Algebra</u>

Every <u>polynomial</u> equation with degree > 0 has at least <u>1 root</u> in the <u>complex numbers</u>.

Every polynomial P(x) of degree n (n > 0) can be written as the product of a constant k ($k \neq 0$) and n linear factors.

$$P(x) = k(x - r_1)(x - r_2)...(x - r_n)$$

... A polynomial equation of degree n has exactly n complex roots.

K usually = 1 r_1 , r_2 , r_3 ... are the roots

1.
$$P(x) = x^2 - x - 6$$

 $P(x) = (x - 3)(x + 2)$

2.
$$P(x) = x^4 - 81$$

 $P(x) = (x^2 + 9)(x^2 - 9)$
 $P(x) = (x+3)(x-3)(x+3i)(x-3i)$
 $P(x) = (x+3)(x-3)(x+3i)(x-3i)$

Oct 18 - 7:33 AM

Determine whether each polynomial is a polynomial in 1 variable. I (yes,) state the degree. If no tell why not. 1. $x^2 + 3xy - 5y^3 \rightarrow no$, it has 2 variables

2.
$$x^2-x^3-x+3x^4-1 \rightarrow yll$$
, degree=4

3.
$$8-x-4x^2+\frac{7}{x}\longrightarrow no$$
, x in denom, $7x^{-1}$ not use \pm

4.
$$a^3 + 2a + \sqrt{3} \rightarrow yes$$
, degree = 3

5.
$$\frac{1}{x} = \frac{1}{2x}$$
 \rightarrow No, x's are in denom. Negative exponents

6.
$$2i\sqrt{x} + ix^8 + 5x^4 + 9 \rightarrow no, x under radical = x^{1/2}$$
1/2 is not a natural #

Determine whether each number is a root of P(x) and describe the end behavior of the graph:

1. $P(x) = x^3 + 3x^2 - 3x + 6$ $P(-3) = (-3)^{3} + 3(-3)^{3} - 3 + 6$ = -37 + 27 + 9 + 6 $= 15 \neq 0$ No, not a root $x^3 \rightarrow + x^6 dd$ $x^4 \rightarrow + x^6 dd$ $x^4 \rightarrow + x^6 dd$ $x^4 \rightarrow + x^6 dd$

Determine whether each number is a root of P(x) and describe the end behavior of the graph:

3.
$$P(x) = -x^5 + 2x^2 - 3$$

4.
$$P(x) = -x^6 + x^5 + 2x^3 - x + 5$$
 2

$$P(-1) = -(-1)^{5} + 2(-1)^{2} - 3$$

$$= -(-1) + 2 - 3$$

$$= 1 + 2 - 3$$

$$= 0$$

$$y(3), x(0) + 0$$

$$-x^{5} - x^{0} + 0$$

$$P(2) = -(2)^{6} + 2^{5} + 2(2)^{3} - 2 + 5$$

$$= -64 + 32 + 16 + 3$$

$$= -32 + 19 = -13$$

$$\therefore NO_{1} not a not$$

$$-x^{6} \rightarrow -x$$
even

Oct 19-7:15 PM

Multiplicity of Roots:

A factor of $(x-a)^k$ yields a repeated zero x = a of multiplicity k. $(x-a)^k$ $(x-a)^k$

If <u>k is odd</u>, the graph <u>crosses the x-axis</u> at $\underline{x} = \underline{a}$.

If <u>k</u> is **even**, the graph **touches** (but does not cross) the x-axis at x = a. (ie graph is tangent to the x-axis at a)

Find the zeros of each polynomials and state the multiplicity of each. Sketch.

Oct 19-7:16 PM

Find the zeros of each polynomials and state the multiplicity of each. Sketch.

Find the zeros of each polynomials and state the multiplicity of each. Sketch.

Oct 19-7:16 PM

Homework:

pg 269 - 270:

12 - 18 even, 22

29, 30 sketch both

Graded Due Monday!

1 - per1 Poly Functions & Multiplicity.notebook	October 17, 2019