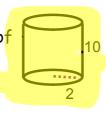
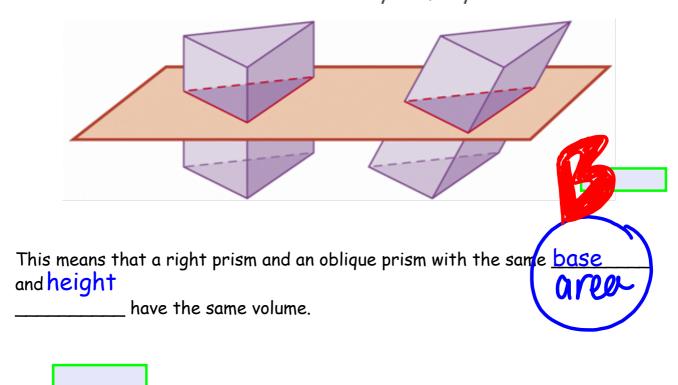

- HW 9-6 -

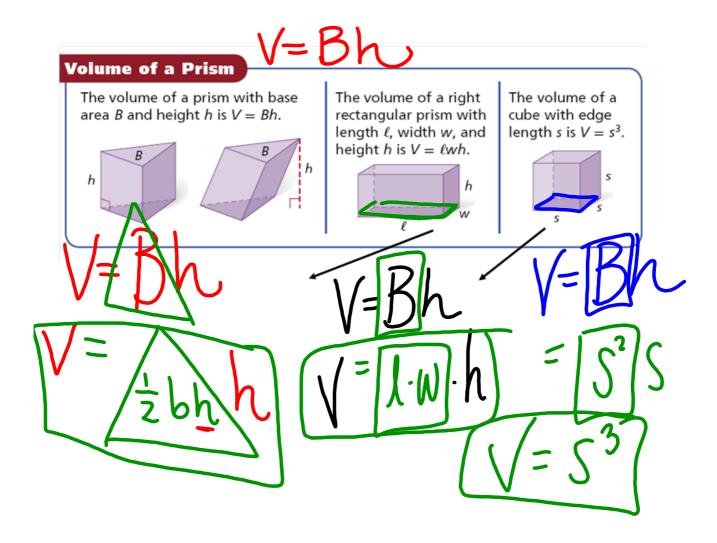
- 1. For each shape, describe (in a picture or in words) a cross section taken
- a) parallel to the base
- b) perpendicular to the base


2 Describe each cross-section

3. Which shape best represents a hexagonal prism when viewed from the top?

- 4. Describe the cross section obtained by cutting a plane through the diameter of the base and perpendicular to the base of a right cylinder. <u>rectangle</u>
- 5. A 2 \times 10 rectangle is revolved around the side of length 2. Draw the resulting solid.

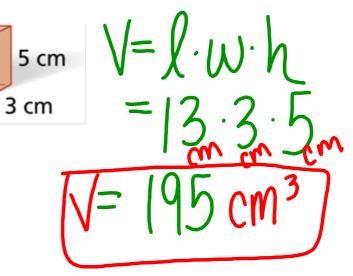



6. A right triangle with leg lengths 3 and 11 is revolved around the side of length 11. Draw the resulting solid.

Notes 4	4: Volume of	risms and Cylinders	
		of a three-dimensional figure is the number of CUDES of a given size that will exactly fill the interi	ior.

Cavalieri's principle says that if two three-dimensional figures have the same height and have the same cross-sectional area at every level, they have the same volume.

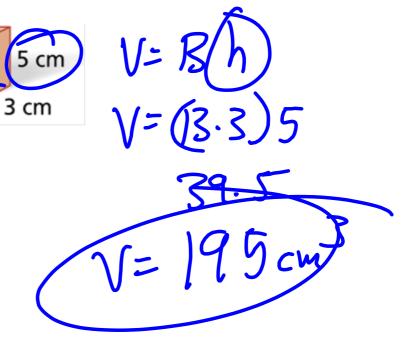
FORMULAS


Triangle	$A = \frac{1}{2}bh$
Parallelogram	A = bh
Circle	$A = \pi r^2$
Circle	$C = \pi d$ or $C = 2\pi r$
General Prisms	V = Bh
Cylinder	$V = \pi r^2 h$
Sphere	$V = \frac{4}{3}\pi r^3$
Cone	$V = \frac{1}{3}\pi r^2 h$
Pyramid	$V = \frac{1}{3}Bh$

Examples:

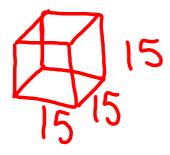
1) Find the volume of the prism. Round to the nearest tenth, if

13 cm



Examples:

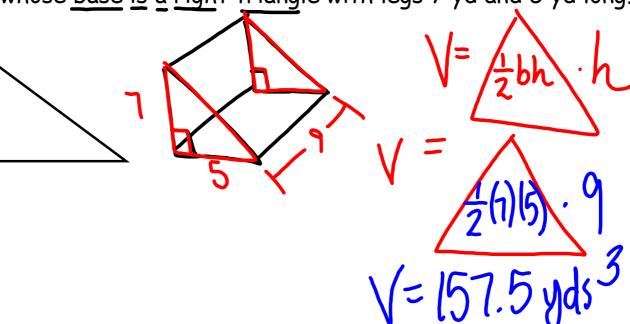
1) Find the volume of the prism. Round to the nearest tenth, if


13 cm

necessary.

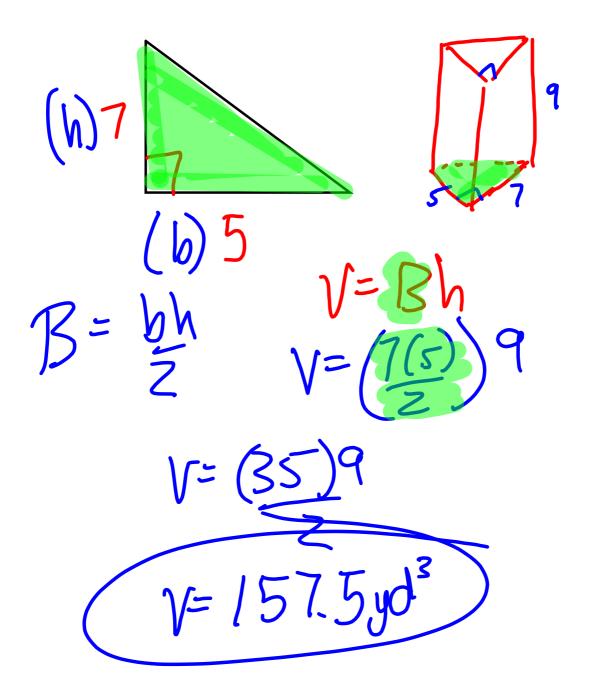
2) Find the volume of a <u>cube</u> with edge length <u>15</u> in. Round

to the nearest tenth, if necessary.



$$V=5^3$$

 $V=15^3$
 $V=3,37510^3$

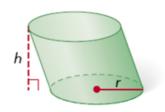

2) Find the volume of a cube with edge length 15 in. Round

to the nearest tenth, if necessary V = 15 V = (15.15)15 V = (15.15)15

3) Find the volume of a triangular prism with a height of 9 yd whose <u>base</u> is a <u>right</u> triangle with legs 7 yd and 5 yd long.

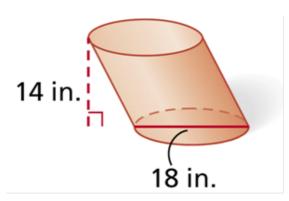
3) Find the volume of a triangular prism with a height of 9 yd whose base is a right triangle with legs 7 yd and 5 yd long.

Cavalieri's principle also relates to cylinders.

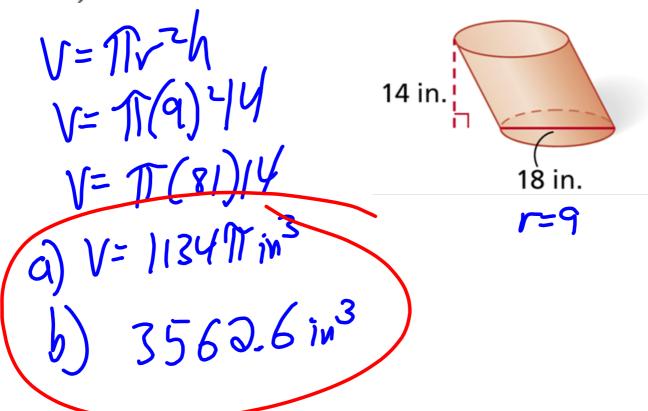

The two stacks have the same number of CDs, so they have the same volume.

Volume of a Cylinder

The volume of a cylinder with base area B, radius r, and height h is V = Bh, or $V = \pi r^2 h$.



Examples:


- 1) Find the volume of the cylinder. Give your answers
 - \cdot a) in terms of π and
 - b) rounded to the nearest tenth.

$$V=TTr^{2}h$$

 $=TT(9)^{2}(14)$
 $V=1134TT in 3$
b) $V\approx 3,562.6 in 3$

Examples:

- 1) Find the volume of the cylinder. Give your answers
 - a) in terms of π and
 - b) rounded to the nearest tenth.

March 01, 2018

- 2) Find the volume of a cylinder with a diameter of 16 in. and a height of 17 in. Give your answer a) in terms of π and
 - b) rounded to the nearest tenth.

- 2) Find the volume of a cylinder with a diameter of 16 in. and a height of 17 in. Give your answer a) in terms of π and
 - b) rounded to the nearest tenth.

$$V = \pi r^{2}h$$

$$V = \pi (8)^{2} 17$$

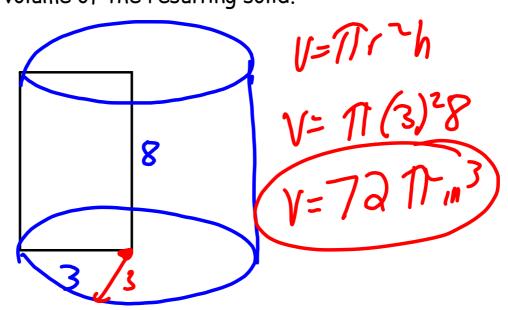
$$V = \pi (84)/7$$
a) $V = 1088\pi \text{ in}^{3}$
b) & $V = 3418.1 \text{ in}^{3}$

- 3) Find the volume of a cylinder with base area 121π cm² and a height equal to twice the radius. Give your answer a) in terms of π and
 - b) rounded to the nearest tenth. $\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$

3) Find the volume of a cylinder with base area 121π cm² and a height equal to twice the radius. Give your answer a) in terms of π and

$$V = \pi r^{2}h$$
 $V = \pi r^{2}h$
 $V = \pi r^{2}h$

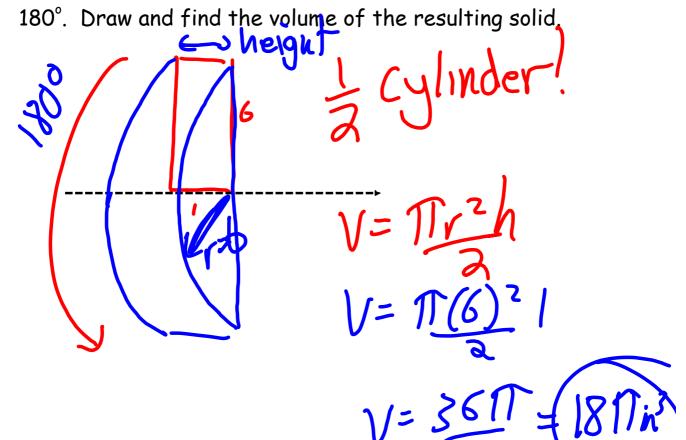
7 Volume Prisms Cylinders '16-'17.notebool	7	Volume	Prisms	C	ylinders	'16-	17	noteboo	ok
--	---	--------	---------------	---	----------	------	----	---------	----


Marc	h 01.	2018
------	-------	------

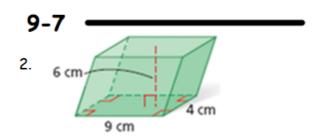
Volumes formed by revolution:

4) A $3in \times 8$ in rectangle is rotated around the 8in side. Draw and find the volume of the resulting solid.

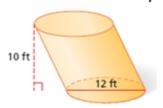
Volumes formed by revolution:


4) A $3in \times 8$ in rectangle is rotated around the 8in side. Draw and find the volume of the resulting solid.

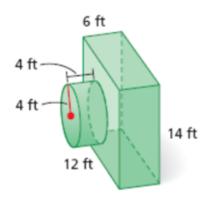
5) A 1 m \times 6 m rectangle is rotated around the 1 in side by 180°. Draw and find the volume of the resulting solid.



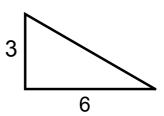
5) A 1 m \times 6 m rectangle is rotated around the 1 in side by


Find the volume of each prism.

 A cube with edge length 8 ft.



3. Find the volume of a cylinder with base area $25\pi\,\mathrm{cm^2}$ and height 3cm more than the radius.



5. Find the volume.

Find the volume of the solid formed by revolving the triangle below around the short side.

