Class Notes 4: Lines That Intersect Circles

Lines & Segments that Intersect Circles

Pairs of Circles

Match the following pairs of circles with their corresponding picture and give a quick definition in your own words:

CONGRUENT CIRCLES

Two circles are congruent if and only if they have congruent

radil with

CONCENTRIC CIRCLES Coplanar circles with the same Center

• TANGENT CIRCLES

Two coplanar circles that intersect at exactly ____ point

 \bigcirc B if \overline{AC} \cong \overline{BD} .

Example 2: Identifying Tangents of Circles

Find the length of each radius. Identify the point of tangency and write the equation of the tangent line at this point.

• Radius of Circle A:

- Radius of Circle B:
 - Point of Tangency: (3,0)
 - Equation of Tangent Line:

Think about it: How do you know if the equation of a tangent line that is an axis should be written as "x =" or "y ="?

TRY IT!

Find the length of each radius. Identify the point of tangency and write the equation of the tangent line at this point.

Radius of Circle D:

Radius of Circle C:

Point of Tangency: (2,-1)

Equation of Tangent Line: 9 = - |

A **common tangent** is a line that is tangent to two circles.

Lines ℓ and m are common external tangents to $\odot A$ and $\odot B$.

Lines p and q are common internal tangents to $\odot A$ and $\odot B$.

How many common tangents do the following tangent circles have?

Try It!

How many common tangents do the following circles have?

Tangent Theorems

* (<u>Theorem</u>	<u>Hypothesis</u>	<u>Conclusion</u>
	A line tangent to a circle → line ⊥ to radius	l is tangent to •A	AB L L (⊥→Rt x's)
7	A line ⊥ to a radius → line tangent to circle	m is \perp to \overline{CD} at D	

Example 3: Tangent Theorem

