Class Notes 4: Lines That Intersect Circles ## Lines & Segments that Intersect Circles #### Pairs of Circles Match the following pairs of circles with their corresponding picture and give a quick definition in your own words: CONGRUENT CIRCLES Two circles are congruent if and only if they have congruent radil with CONCENTRIC CIRCLES Coplanar circles with the same Center • TANGENT CIRCLES Two coplanar circles that intersect at exactly ____ point \bigcirc B if \overline{AC} \cong \overline{BD} . Example 2: Identifying Tangents of Circles Find the length of each radius. Identify the point of tangency and write the equation of the tangent line at this point. • Radius of Circle A: - Radius of Circle B: - Point of Tangency: (3,0) - Equation of Tangent Line: Think about it: How do you know if the equation of a tangent line that is an axis should be written as "x =" or "y ="? #### TRY IT! Find the length of each radius. Identify the point of tangency and write the equation of the tangent line at this point. Radius of Circle D: Radius of Circle C: Point of Tangency: (2,-1) Equation of Tangent Line: 9 = - | A **common tangent** is a line that is tangent to two circles. Lines ℓ and m are common external tangents to $\odot A$ and $\odot B$. Lines p and q are common internal tangents to $\odot A$ and $\odot B$. How many common tangents do the following tangent circles have? Try It! How many common tangents do the following circles have? ## Tangent Theorems | * (| <u>Theorem</u> | <u>Hypothesis</u> | <u>Conclusion</u> | |-----|---|--|----------------------| | | A line tangent
to a circle →
line ⊥ to radius | l is tangent to •A | AB L L
(⊥→Rt x's) | | 7 | A line ⊥ to a radius → line tangent to circle | m is \perp to \overline{CD} at D | | # Example 3: Tangent Theorem