Geometry HW 13-5 Name_____

Period_____ Date____

1.

Given: tangent \overline{AD}

diameter \overline{CD}

secant \overline{AC}

Prove: $\triangle ADC \sim \triangle DBC$

Statement	Reason
	Given
$\angle C \cong \angle C$	Reflexive
$\overline{\overline{AD}} \perp \overline{\overline{DC}}$	Radius \perp to tangent at point of tangency
$\angle ADC$ is a rt \angle	$\perp lines \rightarrow rt. \angle 's$
$\angle DBC$ is a rt \angle	Incribed \angle in a semi-circle \rightarrow rt. \angle
$\angle ADC \cong \angle DBC$	$rt. \measuredangle's \rightarrow \cong \measuredangle's$
$\triangle ADC \cong \triangle DBC$	AA~

Given: Circle O, chords AC and BD intersecting at E. Point C is the midpoint of arc BD. Chords AD, AB, and DC.

Prove: AACD ~ AABE

	D	
Statement	Reason	
1.	1. Given	_
$2. \widehat{BC} \cong \widehat{DC}$	2. Midpoint →≅ arcs	
3. $\angle DAC \cong \angle BAE$	3. Inscribed \angle 's that intercept \cong	arcs
	→≅ ∠ 's	
4 . ∠ <i>ACD</i> ≅ ∠ <i>ABE</i>	4. Inscribed \angle 's that intercept the	same arc
	→≅ ∠ 's	_
5 . △ <i>ACD</i> ~△ <i>ABE</i>	5. AA~	
		_
		_

 $(AN)^2 = AR \cdot AB$

3.

In the diagram of circle O below, diameter \overline{RS} , chord \overline{AS} , tangent \overline{TS} , and secant \overline{TAR} are drawn.

Complete the following proof to show $(RS)^2 = RA \cdot RT$

Statements

- 1. circle O, diameter \overline{RS} , chord \overline{AS} , tangent \overline{TS} , and secant \overline{TAR}
- 2. $\overline{RS} \perp \overrightarrow{TS}$
- 3. $\angle RST$ is a right angle
- 4. $\angle RAS$ is a right angle
- $5. \angle RST \cong \angle RAS$
- $6. \angle R \cong \angle R$
- 7. $\triangle RST \sim \triangle RAS$
- $8. \frac{RS}{RA} = \frac{RT}{RS}$
- $9. (RS)^2 = RA \cdot RT$

Reasons

- 1. Given
- 2. Radius \(\preceq\) to tangent at point of tangency
- 3. ⊥ lines form right angles
- 4. Incribed \angle in a semi-circle \rightarrow rt. \angle
- _____
- $5. \underline{rt. \measuredangle's} \rightarrow \cong \measuredangle's$
- 6. Reflexive property
- 7._AA~
- 8. Corresponding Sides of Similar

Triangles are Proportional

9. Product of Means = Product of Extremes

Geometry

Name.

HW 13-2

Period_ Date_

Find the area of each sector. Give your answer in terms of π and rounded to the nearest hundredth.

12. sector DEF

$$A = \frac{500\pi}{3} m^2$$

$$A = 523.60 \ m^2$$

Find each arc length. Give your answer in terms of π and rounded to the nearest hundredth.

19. \widehat{UV}

$$L=\frac{25\pi}{18} mm$$

Convert the following to radians.

1. 30°
$$\frac{\pi}{6}$$

2.
$$-45^{\circ}$$
 $-\frac{\pi}{4}$

3. 180°
$$\pi$$

4. - 135°
$$-\frac{3\pi}{4}$$

$$5.85 \sqrt{17\pi}$$

Convert the following radians to degrees.

7.
$$\frac{7\pi}{4}$$
 315° 8. $\frac{9\pi}{6}$

8.
$$\frac{9\pi}{6}$$
 270°

Take Home Quiz due

Rip out HW 13-4 and Turn it in with the

QUIZ

Warm-up: August 2017 #23
June 2016 #29

 ${f 29}$ In the diagram below, Circle 1 has radius 4, while Circle 2 has radius 6.5. Angle A intercepts an

Dominic thinks that angles A and B have the same radian measure. State whether Dominic is correct or not. Explain why

Class Notes 9: Review of Circle Constructions

Review: Construct the perpendicular bisector of the following segment.

Example: Construct a line that is tangent to the given circle and goes through point A.

radius 1

 ${\it Construct} \ an \ equilateral \ triangle \ inscribed \ in \ the \ circle \ below:$

Construct a regular hexagon in the circle below:

