

 \rightarrow 8. the area of a trapezoid in which $b_1 = 3$ yd, $b_2 = 6$ yd, and $b_3 = 4$ yd $a_4 = 18$ yd $a_5 = 18$

8.
$$A = \frac{b_1 + b_2}{2}h$$

$$A = \frac{3+6}{2}H$$

$$(3+6)2$$

$$(9)(2)$$

$$(18)$$

Day 3: Composite Figures

Learning Target:

- 1. Use the Area Addition Postulate to find the areas of composite figures.
- 2. Use composite figures to estimate the areas of irregular shapes.

Warm-Up: Find the area of the shape

Career	Info	:

Landscape architects must compute areas of composite figures when designing gardens.

A composite figure is made up of simple

shapes, such as

trapezoid s parallelograms circles, and

Try It!

3.

II. Finding the Areas of Composite Figures by Subtracting

For examples 4-6, find the shaded area. Round to the nearest tenth, if necessary.

4.

remember a square is also a

III. Finding the Areas of Irregular Shapes

 Use a composite figure to estimate the shaded area. The grid has squares with side lengths of 1 cm.

Method 1: Draw a composite figure	Method 2: Count the squares

HW Worksheet 9-3

See Numbers 3 & 7 next page for what parts are shaded!

(remember quiz 1 review in HW Packet)

FORMULAS

Triangle	$A = \frac{1}{2}bh$
Parallelogram	A = bh
Circle	$A = \pi r^2$
Circle	$C = \pi d$ or $C = 2\pi r$
General Prisms	V = Bh
Cylinder	$V = \pi r^2 h$
Sphere	$V = \frac{4}{3}\pi r^3$
Cone	$V = \frac{1}{3}\pi r^2 h$
Pyramid	$V = \frac{1}{3}Bh$

You will get these but you need to memorize trapezoid and rhombus formulas!

HW #9-3 Pg 609-612: 9-12, 14-17, 41

HW 9-3

1. Find the area.

2. Find the area.

24 in. 18 in. 12 in. 51 in.

4. Estimate the shaded region. Each square has side length 1 m.

Estimate the shaded region.
 Each square has side length 1 ft.

6. Find the shaded area.

7. Find the shaded area.

8. Find the area of an equilateral triangle with a side length of 3 cm.