

Date	Lesson	Homework
	Properties of a Parallelogram	HW 11-1
	Parallelogram Proofs	HW 11-2
	Parallelogram Coordinate Proofs	HW 11-3
	Properties of a Rhombus	HW 11-4
	Rhombus Proofs	HW 11-5
	Properties of a Rectangle	HW 11-6/Study
	QUIZ	
	Rectangle Proofs	HW 11-7
	Properties of a Square	HW 11-8
	Square Proofs	HW 11-9
	Properties of a Trapezoid	HW 11-10
	Trapezoid Proofs	HW 11-11
	Unit 11 Review	Review WS/STUDY!!
	Unit 11 Test	

Lesson 1: Quadrilaterals and Parallelograms

The Quadrilateral

Properties you need to know about quadrilaterals:

- A quadrilateral is a polygon with 4 sides and 4 angles.
- The sum of the <u>interior</u> angles of a quadrilateral is 360°.
- The sum of the <u>exterior</u> angles of a quadrilateral is 360°.

A parallelogram is a quadrilateral with 2 pairs of parallel sides.

Properties you need to know about parallelograms:

A parallelogram is a polygon with 4 sides and 4 angles. The sum of the <u>interior</u> angles is 360°.

The sum of the exterior angles is 360°.

Additional properties

Opposite angles are congruent.

- The diagonals bisect each other.
- The diagonal divides the parallelogram into 2 congruent triangles.

Parallelogram

- 1) \longrightarrow both pairs opposite sides //
- 2) \longrightarrow both pairs opposite sides \cong
- 3) \longrightarrow both pairs opposite \angle 's \cong
- 4) \longrightarrow diagonals bisect each other (\cong segments)
- 5) \longrightarrow consecutive \angle 's are supplementary

Ex 1: In $\Box DEOB$, the measure of $\angle D$ is 36° less than the measure of $\angle E$.

Ex 3: Two diagonals, which meet at point T, are drawn in $\Box HJES$. The length of \overline{HJ} is 11. The sum of the total length of the diagonals \overline{HE} and \overline{JS} is 38. The length of \overline{HT} is 8.5. What is the length of \overline{JS} ?

Ex 2: In \Box CPHR, the sum of the measures of angle C and angle H is 242°. If $m \not= C = (120 + x)^\circ$, what is the value of x?

Ex 4: In \square REN, a diagonal \overline{RN} is drawn. The measure of $\angle REN = 66^{\circ}$ and the measure of $\angle RNE = 63^{\circ}$. What is the measure of $\angle RNT$?

Ex 5: Given $\Box ABDC$ with m $\angle DAC = (2x + 60)^\circ$, m $\angle ADB = (40 + x)^\circ$, m $\angle DAB = (x + 60)^\circ$ and m $\angle ADC = (100 + 3x)^\circ$, find the value of x.

Ex 6: Given: $\overline{AB} // \overline{CD}$ and $\overline{AD} // \overline{BC}$ Prove: $\angle 1 \cong \angle 2$

- A	
/3	2/
■ D/1	4/c
✓	/5
	↓

Statements	Reasons
	-

HW 11-1

Homework Packet 11-1