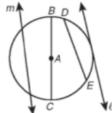

31 Line n is represented by the equation 3x + 4y = 20. Determine and state the equation of line p, the image of line n, after a dilation of scale factor $\frac{1}{3}$ centered at the point (4,2). [The use of the set of axes below is optional.]

26 In the diagram of rhombus PQRS below, the diagonals \overline{PR} and \overline{QS} intersect at point T, PR=16, and QS=30. Determine and state the perimeter of PQRS.

#is 1-11 Skip#4 Due Tues QUIZ 11-1


LESSON Practice A

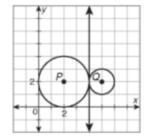
Lines That Intersect Circles

For Exercises 1-5, match the letter of the part of the figure to the names. Use each letter once.

- 1. chord
- 2. tangent
- 3. radius
- 4. secant
- 5. diameter

- A. \overline{AB}
- Β. ℓ
- C. m
- D. BC
- E. DE

Use the figure for Exercises 6-8.


D

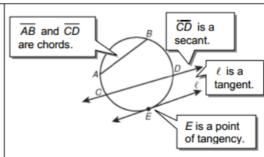
- 6. radius of ⊙P __2 __ radius of ⊙Q ___1
- 7. coordinates of the point of tangency (4 ,

8. equation of the tangent line at the point of tangency

$$x = 4$$

More Problems on other side!

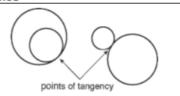
LESSON


Reteach

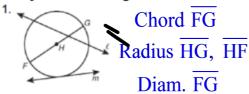
11-1

Lines That Intersect Circles

a comment whose and seints


- A chord is a segment whose endpoints lie on a circle.
- A secant is a line that intersects a circle at two points.
- A tangent is a line in the same plane as a circle that intersects the circle at exactly one point, called the point of tangency.
- · Radii and diameters also intersect circles.

Tangent Circles


Lines and Segments That Intersect Circles

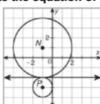
Two coplanar circles that intersect at exactly one point are called **tangent circles**.

Identify each line or segment that intersects each circle.

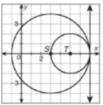
IF L

Chord \overline{LM} Radius \overline{JK}

Secant LM


Tangent NM

Secant *l* Tangent *m*


Tangent 1

Find the length of each radius. Identify the point of tangency and write the equation of the tangent line at that point.

3.

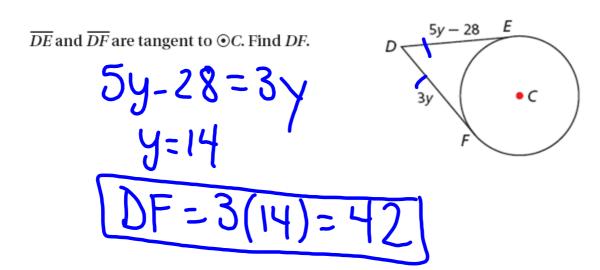
4

$$(-1, -2)$$
 y = -2

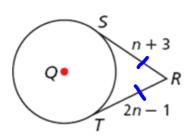
Circle 5:
$$r = 4$$

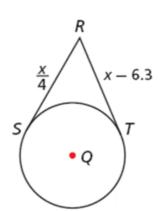
Circle T:
$$r = 2$$

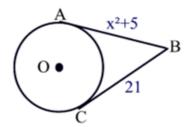
$$(7,0) \times = 7$$


Class Notes 5: Tangents - continued and Perpendicular Bisector of a Circle

Warm-up: How many common tangents are there for the following circles?


<u>Theorem</u>	<u>Hypothesis</u>	<u>Conclusion</u>
2 segments tangent to a circle from same exterior point → segments ≅	\overline{AB} and \overline{AC} are tangent to $\bigcirc P$.	AB ≅ AC

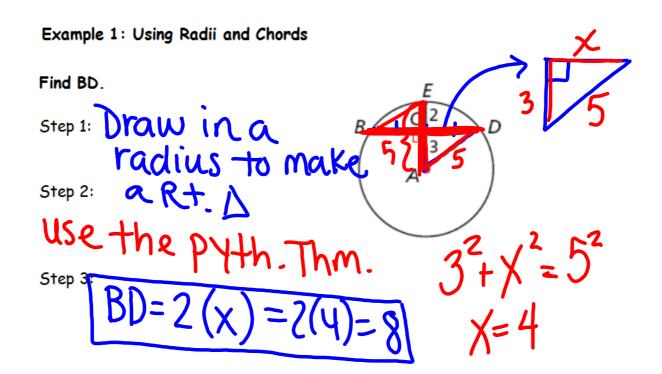

Example 1: Using Properties of Tangents



TRY IT!

 \overline{RS} and \overline{RT} are tangent to $\odot Q$. Find RS.

	Choose:


 \overline{AB} , \overline{CB} tangents. Find x.

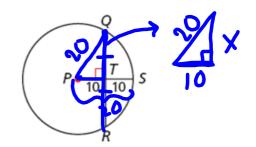
168

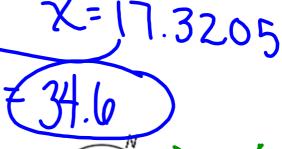
O 21

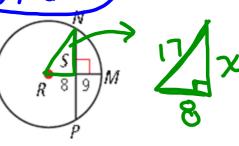
Perpendicular Bisector of a Circle

	Theorem	Hypothesis	Conclusion
	In a circle, if a		
	radius (or diameter)	(c)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	is perpendicular to a	E F	EA ~ AF*
3	chord, then it	D	
	bisects the chord	$\overline{CD} \perp \overline{EF}$	ED = DF
	and its arc.		·
	In a circle, the	J	
	perpendicular		
	bisector of a chord	(A •)	
	is a radius (or	G	
	diameter).	K	
		\overline{JK} is \perp bisector of \overline{GH} .	

TRY IT!


A) Find QR to the nearest tenth.


Step 1:



Step 1:

84 X2=172

