Geometry

HW 12-3 13

Name_ Period_ Date_

Determine the Center and Radius of the given circles.

1.
$$(x-5)^2 + (y+8)^2 = 16$$

1.
$$(x-5)^2 + (y+8)^2 = 16$$
 Center (5, -8) Radius = 4

2.
$$25 = x^2 + (y - 7)^2$$

Determine the equation of circle C.

$$(x-2)^2 + (y+6)^2 = 64$$

4. 7. Radius =
$$\sqrt{7}$$
 cm, C(-3, -1)

$$(x+3)^2 + (y+1)^2 = 7$$

5. Graph the following circle.
$$(x+4)^2 + (y+2)^2 = 9$$

Write the standard form of a circle based on the given information.

6. Center: (2, -5), Point on Circle: (-7, -1)

$$(x-2)^2 + (y+5)^2 = 97$$

7. Endpoints of diameter: (-3, 11) and (3, -13)

$$x^2 + (y+1)^2 = 153$$

8. Put each circle in general form. $(x-7)^2 + (y+10)^2 = 81$

$$x^2 + y^2 - 14x + 20y + 58 = 0$$

Determine the Center and Radius of the given circles by completing the square.

9.
$$x^2 + y^2 + 14x - 12y + 4 = 0$$

9.
$$x^2 + y^2 + 14x - 12y + 4 = 0$$
 Center (-7 , 6) Radius = 9

10
$$x^2 + 2x + x^2 - 55 + 10x$$

10.
$$x^2 + 2x + y^2 = 55 + 10y$$
 Center (-1 , 5) Radius = 9

A SCOT of a circle is a region bounded by two Yadii of the circle and their intercepted arc.

Sector ACB is illustrated to the right.

The Office of a sector is a fraction of the circle's area.

We can write and solve the following proportion to find the area of a sector.

HELPFUL HINT: Write the degree symbol after m in the formula to help you remember

to use degree measure NOT arc length.

Finding the Area of a Sector

Find the area of each sector. Give your answer in rounded to the nearest hundredth.

sector MPN

$$\frac{360}{360}A = \frac{720}{360}T$$

$$A = 7T 3$$

$$\approx 6.2881...$$

$$\frac{360}{360}A = \frac{432017}{360}$$

 $A = 1217 \text{ cm}^2$
 $A \approx 37.70 \text{ cm}^2$

TRY IT!

Find the area of each sector. Give your answer in terms of π and rounded to the nearest hundredth.

1) sector ACB

2) sector JKL

An Ito of a circle is the distance along an ance measured in Inear units (not degrees).

The arc lengthis a fraction of the circle's circumference.

We can write and solve the following proportion to find the arc length.

8

Finding Are Length
$$\frac{L}{211r} = \frac{m}{360}$$

Find each arc length. Give your answer in terms of π and rounded to the nearest hundredth.

B an arc with measure 35° in a circle with radius 3 in.

29 In the diagram below of circle O, the area of the shaded sector AOC is 12π in and the length of \overline{OA} is 6 inches. Determine and state $m \angle AOC$.

TRY IT!

Find each arc length. Give your answer in terms of π and rounded to the nearest hundredth.

1) *GH*

2) An arc length with measure 135 degrees in a circle with radius 4 cm.

May 10, 2017