Directions: Determine the length (distance) of each line segment using the formula.

1) G(6,5) and H(9,2)

$$d = \sqrt{(9-6)^2 + (2-5)^2} = \sqrt{9}\sqrt{2}$$

$$= \sqrt{(3)^2 + (-3)^2}$$

$$= \sqrt{9+9}$$

$$= \sqrt{18}$$
Distance = $\sqrt{3}\sqrt{2}$

GH = ____

2) A(1,1) and B(-3,-3)

$$d = \sqrt{(-3-1)^2 + (-3-1)^2}$$

$$= \sqrt{(-4)^2 + (-4)^2}$$

$$= \sqrt{16+16}$$

$$= \sqrt{32} = \sqrt{16}\sqrt{2}$$
Distance = $4\sqrt{2}$

3) M(2a,b) and N(a,2b)

$$A = \sqrt{(2a-a)^2 + (b-2b)^2}$$

$$A = \sqrt{a^2 + (-b)^2}$$

$$A = \sqrt{a^2 + b^2}$$

MN = ____

 Express, in simplest radical form, the distance between the points whose coordinates are J(2,4) and K(-2,10).

5. The coordinates of the vertices of $\triangle ABC$ are A(0,0), B(3,0) and C(0,4). What is the

length of
$$\overline{BC}$$
? $BC = \sqrt{(0-5)^2 + (4-0)^2}$
 $BC = \sqrt{(3-5)^2 + (4-0)^2}$
 $BC = \sqrt{(3-5)^2 + (4-0)^2}$

6. Find the length of the radius of a circle with a center at the **origin** and passes through the point (-3,4).

7. Determine whether the triangle with vertices at A(8,0), B(-3,2) and C(10,2) is isosceles, equilateral or scalene. Justify your answer.

equilateral or scalene. Justify your answer.

$$AB = \sqrt{(-3-8)^2 + (2-0)^2} \qquad BC = \sqrt{(0-3)^2 + (2-2)^2} \qquad AC = \sqrt{(0-3)^2 + (2-0)^2}$$

$$AB = \sqrt{(21+4)} \qquad BC = \sqrt{(3^2+0)} \qquad AC = \sqrt{(3^2+a^2)^2}$$

$$BC = (10 - 3)^{R} + (2 - 2)^{2}$$

$$BC = \sqrt{(3^{2} + 0)^{2}}$$

$$AC = \sqrt{(0-1)^2 + (2-0)^2}$$

$$AC = \sqrt{2^2 + 2^2}$$

AABC is scalene, all three sides are different lengths

8. In circle 0, diameter \overline{RS} has endpoints R(3a, 2b-1) and S(a-6, 4b+5). Find the coordinates of point O, in terms of a and b. Express your answer in simplest form.

Center Ois MIDDEM) of RS

$$O(2a-3,3b+2)$$

9. If the endpoints of \overline{AB} are A(-4,5) and B(2,-5), what is the length of \overline{AB} ?

 2√34 2) 2

 $AB = \sqrt{(2-4)^2 + (-5-5)^2} \qquad AB = \sqrt{4}\sqrt{34}$ $AB = \sqrt{4}\sqrt{34}$

4)8

10. Square LMNO is shown in the diagram. What are the coordinates of the midpoint of diagonal \overline{LN} ?

diagonal LN?
$$1)\left(4\frac{1}{2},-2\frac{1}{2}\right) \qquad \mathcal{N}:\left(-\frac{6+1}{2},\frac{8+1}{2}\right)$$

3)
$$\left(-2\frac{1}{2}, 3\frac{1}{2}\right)$$

2) $\left(-3\frac{1}{2}, 3\frac{1}{2}\right)$ 3) $\left(-2\frac{1}{2}, 3\frac{1}{2}\right)$ 4) $\left(-2\frac{1}{2}, 4\frac{1}{2}\right)$

6. T is the midpoint of \overline{SU} . Find the coordinates of S if U(-6, 4) and T (4,8).

7. Determine if $\triangle ABC$ is an isosceles triangle if it has vertices A(-2, 5), B(3,0) and C(-3, -2). B at least $2 \le Sides$

8. Determine the slope of the following lines given their equations:

b)
$$y - 3 = -2(x + 1)$$

Lesson 3: Partitioning a Segment

Warm-up:

1) Find the slope of the following lines:

m=____

m=____

2) Find the midpoi

Fig. the midpoint of \overline{AB} :

3) Find the length of $\overline{\it AB}$

Solve for x:

1)
$$\frac{x-3}{6-x} = \frac{5}{2}$$

Solve for y:

2)
$$\frac{y+2}{5-y} = \frac{5}{2}$$

Partitioning a Segment

Question: How do you find the point on a directed line segment that partitions a segment into a given ratio?

<u>Directed Line Segment</u>: A directed line segment is a line segment that has <u>direction</u> associated with it, usually specified by moving from one endpoint to another. 1. Find the coordinates of point C that lies along the directed line segment from A (1,1) to B (4,1) and partitions the segment in the ratio of 2 to 1.

a. Draw \overline{AB} with C between A and B Label the coordinates of A, B, and

and CB in the x direction.

$$= \frac{\times -1}{4 - \times}$$

Solve your proportion to find the x coordinate of C.

d. Make a proportion describing the lengths of AC and CB in the y direction.

e. Solve your proportion to find the y coordinate of \mathcal{C} .

$$\frac{2}{1} = \frac{y-1}{1-y}$$

$$2(1-y) = 1(y-1) \quad (y=1)$$

f. Write C as an ordered pair.

Think of 2 ways you can CHECK to make sure your answer is correct:

14

Use both methods to check the accuracy of your answer. $\begin{tabular}{l} \hline \end{tabular}$

SLOPE	DISTANCE

2. Find the coordinates of the point P that lies along the directed line segment from A(3,4) to B(6,10) and partitions the segment in the ratio 3 to 2.

Practice (you MUST use one method to check your work!)

1. Find L on \overline{JK} such that JL: LK=4: 1, when J=(-3,5) and K=(1,-10).

2. Find R on \overline{MP} such that R partitions the line segment in the ratio of 5 to 2, when M=(-10,8) and P=(-2,11).

3. C is between A and B. A, B, and C are collinear. Find the coordinates of B if AC: CB = 5:1, A = (1,2), and C = (6,-1).

HW 10-3:

HW Packet 10-3