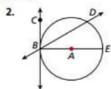
•	Name	
K.	Period	_ Date
ohic aid below summarize	es angle relationships in circles.	
and all bolow durinianze	Angle Relationships	
	in Circles	
<u> </u>		
Vertex lies on a circle.	Vertex lies inside a circle.	Vertex lies outside a circle.
Angle measure is half the measure of the intercepted arc.	Angle measure is half the sum of the measures of the intercepted arcs.	Angle measure is half the difference of the measures of the intercepted arcs.
+		*
	84° E 60°	C 30° B
•	<u> </u>	*
$m \angle XYZ = \frac{1}{2}(65^{\circ})$ = 32.5°	$m\angle AEB = m\angle DEC$ = $\frac{1}{2}(84^{\circ} + 60^{\circ}) = 72^{\circ}$	$m\angle ACB = \frac{1}{2}(76^{\circ} - 30^{\circ})$ $= 23^{\circ}$
h measure.		
1. mZ	60°	2. m∠HIJ 81°

1

Identify each line or segment that intersects each circle.


Chord PR

Diam. PR

Secant PR

Tangent line m

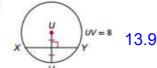
Radius QS, QP, QR

Chord \overline{BD} , \overline{BE} Radius \overline{AE} , \overline{AB} Diam. \overline{BE} Tangent \overline{CB} Secant \overline{BD}

Find each measure.

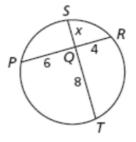
41° 4. BC 270° 5. BED

109° 6. SR 249° 7. SQU


Find each length to the nearest tenth.

8. JK

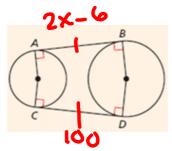
11.5



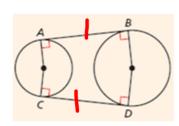
9. XY

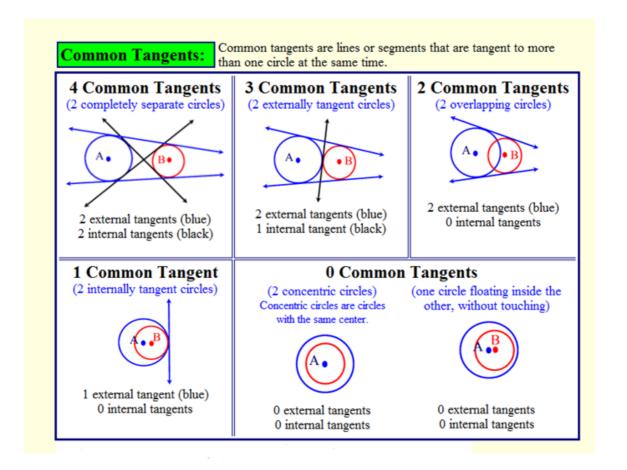
10. Find x.

x = 3

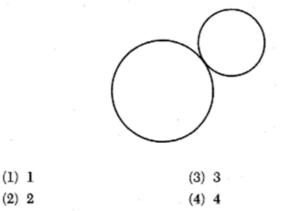


Class Notes N: Parallel Lines and Congruent Tangent Segments

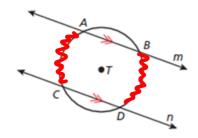

Theorem A-7-1


THEOREM	HYPOTHESIS	CONCLUSION
If two lines are common external tangents to two circles, then the segments connecting each pair of tangent points are congruent.	A B B D	$\overline{AB}\cong\overline{CD}$

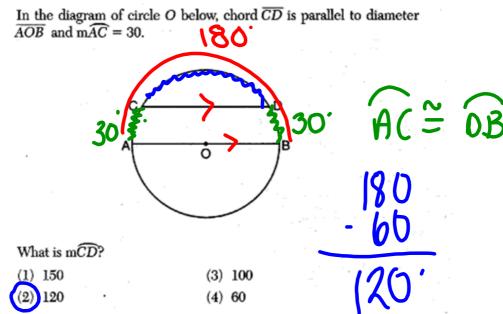
Let AB = 2x - 6 and let CD = 100. Find the value of x.



Let AB = 12x + 16 and let CD= 24x + 4. Find each length.


How many common tangent lines can be drawn to the two externally tangent circles shown below?

May 10, 2018 Notes 10.notebook


Circles and Parallel Lines

Hypothesis

Conclusion

$$\widehat{AC} = \widehat{BD}$$

