## Take out your June 2016 exam and complete the following questions: 3, 10, 23, 24

3 Kevin's work for deriving the equation of a circle is shown below.

$$x^{2} + 4x = -(y^{2} - 20)$$
STEP 1  $x^{2} + 4x = -y^{2} + 20$ 
STEP 2  $x^{2} + 4x + 4 = -y^{2} + 20 - 4$ 
STEP 3  $(x + 2)^{2} = -y^{2} + 20 - 4$ 
STEP 4  $(x + 2)^{2} + y^{2} = 16$ 

In which step did he make an error in his work?

(1) Step 1

(3) Step 3

- (2) Step 2
- (4) Step 4

10 In the diagram below of circle O,  $\overline{OB}$  and  $\overline{OC}$  are radii, and chords  $\overline{AB}$ ,  $\overline{BC}$ , and  $\overline{AC}$  are drawn.





Which statement must always be true?

- (1)  $\angle BAC \cong \angle BOC$
- (3)  $\triangle BAC$  and  $\triangle BOC$  are isosceles.
- (4) The area of  $\triangle BAC$  is twice the area of  $\triangle BOC$ .

23 The graph below shows  $\overline{AB}$ , which is a chord of circle O. The coordinates of the endpoints of  $\overline{AB}$  are A(3,3) and B(3,-7). The distance from the midpoint of  $\overline{AB}$  to the center of circle O is 2 units. computations.



What could be a correct equation for circle O?

$$\int \int \int (x-1)^2 + (y+2)^2 = 29$$

$$(x + 5)^2 + (y - 2)^2 = 29$$

$$(x-1)^2 + (y-2)^2 = 25$$

$$(x + 5)^{2} + (y - 2)^{2} = 29$$

$$(x - 1)^{2} + (y - 2)^{2} = 25$$

$$(4) (x - 5)^{2} + (y + 2)^{2} = 25$$



- 24 What is the area of a sector of a circle with a radius of 8 inches and formed by a central angle that measures 60°?
  - (1)  $\frac{8\pi}{3}$

(2)  $\frac{16\pi}{3}$ 

Geometry

Name\_\_\_\_

HW 13-1

Period\_\_\_\_\_ Date\_\_\_\_

Find the area of each sector. Give your answer in terms of  $\pi$  and rounded to the nearest hundredth.

2. sector PQR



3. sector JKL



4. sector ABC



$$A = 9\pi m^2$$

$$A = 24\pi \ cm^2$$

$$A = \frac{2\pi}{9} ft^2$$

$$A = 28.27 m^2$$

$$A = 75.40 \ cm^2$$

$$A = 0.70 \, ft^2$$

5. The beam from a lighthouse is visible for a distance of 3 miles. To the nearest square mile, what is the area covered by the beam as it sweeps on arc of  $150^{\circ}$ ?



Find each arc length. Give your answer in terms of  $\pi$  and rounded to the nearest hundredth.

9. *EF* 



$$L=4\pi ft$$

**10.**  $\widehat{PQ}$ 



$$L=6\pi m$$

11. an arc with measure 20° in a circle with radius 6 in.

$$L=\frac{2\pi}{3}$$
 in

$$L=2.09 in$$

29 In the diagram below of circle O, the area of the shaded sector AOC is  $12\pi$  in and the length of  $\overline{OA}$  is 6 inches. Determine and state  $m \angle AOC$ .





As seen in the figure above, a radian is defined by an <u>arc</u> of a circle. The length of the arc is equal to the <u>radius</u> of the circle. Because of this the radian is a fixed size no matter what the size of the circle is.

How many radians (radii) are in a full circle?

A full circle has circumference of  $C = 2\pi r$  so number of radians (radii) =  $2\pi$ .

## Example:

If a circle has a radius of 5, then number of radians is \_\_\_\_ = \_\_\_.

We know that  $\underline{\phantom{a}360}$  ° are in a circle. So let's use this to determine how much a radian is in degrees.

So we know that 360° = 211 radians.

We can use this information to convert back and forth from radians to degrees.



radians = 
$$\frac{\pi}{180^{\circ}} \times \text{degrees}$$

| Radians | $1 \text{ radian} = \frac{180}{\pi} \text{ degrees}$ |
|---------|------------------------------------------------------|
| Degrees | $1 \text{ degree} = \frac{\pi}{180} \text{ radians}$ |



Now you try. Convert the following to radians.

1. 
$$45^{\circ}$$
 .  $\frac{11}{180} = \frac{11}{4}$  2.  $-60^{\circ}$  .  $\frac{11}{180} = \frac{11}{3}$  3.  $90^{\circ}$  .  $\frac{11}{180} = \frac{1}{3}$ 

How would you convert from radians to degrees?

Degrees = \_



| Radians | $1 \text{ radian} = \frac{180}{\pi} \text{ degrees}$ |
|---------|------------------------------------------------------|
| Degrees | $1 \text{ degree} = \frac{\pi}{180} \text{ radians}$ |

degrees = 
$$\frac{180^{\circ}}{16} \cdot \frac{71}{6} = \frac{210}{100}$$

Now you try. Convert the following radians to degrees.

1. 
$$\frac{111}{6}$$
.  $\frac{180}{N}$  330° 2.  $\frac{51}{4}$ .  $\frac{180}{N}$  = 225° 3.  $\frac{31}{4}$ .  $\frac{180}{N}$  = 135

4. 
$$\frac{5\%}{6}$$
  $\frac{180}{11}$  = 150. 55. 2.7.  $\frac{180}{11}$  = 154.  $\frac{7}{11}$ 

**29** In the diagram below, Circle 1 has radius 4, while Circle 2 has radius 6.5. Angle A intercepts an arc of length  $\pi$ , and angle B intercepts an arc of length  $\frac{13\pi}{8}$ .



Dominic thinks that angles A and B have the same radian measure. State whether Dominic is correct or not. Explain why.

## August 2017

23 In a circle with a diameter of 32, the area of a sector is  $\frac{512\pi}{3}$ . The measure of the angle of the sector, in radians, is

 $(1) \quad \frac{\pi}{3}$ 

(3)  $\frac{16\pi}{3}$ 

 $(2) \quad \frac{4\pi}{3}$ 

(4)  $\frac{64 \pi}{3}$