2) 120 3) 4495 4) 60 or 10 5) 95,040 6) 635,013,559,600 7) 2,024

Modeling Probability

- Many times, all the possible outcomes will be equally likely. We can develope mathematical models of theoretical probability.
 - It's equally likely to get any one of six outcomes from the roll of a fair die.
 - It's equally likely to get heads or tails from the toss of a fair coin.
- However, keep in mind that events are not always equally
 - A skilled basketball player has a better than 50-50 chance of making a free throw.

Copyright © 2016, 2012 Pearson Education, Inc.

PEARSON

Chapter 12, Slide 8

Modeling Probability

- A random phenomenon is a situation in which we know what outcomes could happen, but we don't know which particular outcome did or will happen.
- Each occasion upon which we observe a random phenomenon is called a trial.
- At each trial, the value of the random phenomenon is called an outcome.
- When we combine outcomes, the resulting combination is an event.
- The collection of all possible outcomes is called the sample space.

ALWAYS LEARNING

Copyright © 2016, 2012 Pearson Education, Inc.

PEARSON

Chapter 12, Slide 9

Modeling Probability (cont.)

The probability of an event is the number of outcomes in the event divided by the total number of possible outcomes.

 Before you count outcomes to find a probability, be sure to check the

> **Equally Likely Condition:** The outcomes being counted are all equally likely to occur.

ALWAYS LEARNING

Copyright © 2016, 2012 Pearson Education, Inc.

PEARSON Chapter 12, Slide 10

Basics of Probability

- (tree diagrams, list of sets) the set of all possible ways in which a probability experiment can turn out. Sample Space 🔿
 - Biased Sample → one or more parts of the population are favored over others
 - Unbiased Sample → every possible sample has an equal chance of being selected
- Favorable Outcomes (successes) \rightarrow the number of outcomes that will make an event occur. 2.

Notation:
$$P(E) = \frac{\text{number of favorable outcomes}}{\text{total possible outcomes}}$$

 $P(E) \rightarrow \text{probability of an event}$

- 3. Some probability facts:
- c. P(not E) = 1 P(E)
- P(E) ranges from 0 to 1

 or 0 to 100%

 b. P(E) = 0 if event E is impossible

 P(not E) = 1 P(E)

 d. P(E) = 1 is event E is certain

 (definite)
- If events A and B have no successful outcomes in common, then

$$P(A \text{ or } B) = P(A) + P(B)$$
 (called mutually exclusive or disjoint events)

If events A and B have outcomes in common that are successes for both events, then

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

g.
$$P(A \text{ and } B) = P(A) * P(B)$$

- B. Theoretical Probability \rightarrow what is expected to occur in an experiment. What should happen,
- Experimental Probability -> estimated from observed simulations or experiments. What actually C. happened.

Examples Using Theoretical Probability

A jar contains 2 red marbles, 3 white marbles, and 4 black marbles. If one marble is chosen at random, find

a.
$$P(red) = \frac{2}{9}$$

a.
$$P(\text{red}) = \frac{2}{9}$$
 b. $P(\text{red or white}) = \frac{2}{9} + \frac{3}{9} = \frac{5}{9}$

Many Stage Experiments:

- tossing 2 coins 1.
- tossing 2 die 2.
- tossing a coin and tossing a die 3.

Consider spinning each spinner once. The sample space may be shown in a tree diagram:

There are a total of _ outcomes.

Find the probability of

a.
$$P(3, 2) = \frac{1}{9} \left(\frac{1}{9} \right)$$

P(at least one even) =

P(both odd) =

- 1,1 or 3,3 P(at most one even) =
- d,

Hornework: pg. 43 #4,6,7,8,9,11,