		00.49
Z-Score Practice Worksheet	Name	K 2.

- 1. A normal distribution of scores has a standard deviation of 10. Find the z-scores corresponding to each of the following values:
 - a) A score that is 20 points above the mean.

2 = +2 $\frac{+2}{7}$ b) A score that is 10 points below the mean.

b) A score that is 10 points below the mean.

$$Z = -\frac{10}{10}$$
c) A score that is 15 points above the mean

$$Z = -\frac{15}{10}$$
d) A score that is 30 points below the mean.

2. The Welcher Adult Intelligence Test Scale is composed of a number of subtests. On one subtest, the raw scores have a mean of 35 and a standard deviation of 6. Assuming these raw scores form a normal distribution:

a) What number represents the 65th percentile (what number separates the lower 65% of the distribution)?

What number represents the 90th percentile? Z= invnorm(-90) = Value-Man

$$\frac{1.28 = x - 35}{6}$$
7.68 = x - 35

χ

c) What is the probability of getting a raw score between 28 and 38?

What is the probability of getting a raw score
$$Z = \frac{28 - 35}{6} = \frac{-7}{6} = -1.167$$

$$Z = \frac{38-35}{6} = \frac{3}{6} = .5$$

7%

normal cdf (-1.167, 5)=

d) What is the probability of getting a raw score between 41 and 44?
$$Z = \frac{91-35}{6} = \frac{6}{6} = \frac{7}{6}$$

$$Z = \frac{94-35}{6} = \frac{9}{6} = \frac{7}{6}$$

normal cdf (1,1.5) + 9.2%

- 3. Scores on the SAT form a normal distribution with $\mu = 500$ and $\sigma = 100$.
 - a) What is the minimum score necessary to be in the top 15% of the SAT distribution?

SAT scores (372 and 638).

SAT scores
$$\frac{(372 \text{ and } 638)}{(372 \text{ and } 638)}$$
.
 $Z = \text{inunorm}(.10) = \text{Vahe-Near}(.10) = \frac{\text{Vahe-Near}(.10)}{100}$
 $X = 372$

$$Z = \frac{1}{100} \text{ morm}(.90) = \frac{\text{Value - Man,}}{5D}$$

$$1.28 = \frac{x - 500}{100}$$

$$x = 1.26$$

$$X = 628$$
 372 to 628

10%

- 4. For a normal distribution, find the z-score that separates the distribution as follows:
 - a) Separate the highest 30% from the rest of the distribution.

b) Separate the lowest 40% from the rest of the distribution.

c) Separate the highest 75% from the rest of the distribution.

5. For the numbers below, find the area between the mean and the z-score:

normal colf
$$(0,1.17) = .379 = 37.9\%$$

b)
$$z=-1.37$$

normalcof(-1.37,0) = .45 = 41.5%

HWK: Packet Pg. 52#12-14