Homework 7-4

#1 - 8 see next slide for sketches

#1 - 8 reference angles:

1. 30° 2. $\pi/6$ 3. $\pi/3$ 4. None

5. 45° 6. $\pi/4$ 7. $\pi/6$ 8. $\pi/3$

9. III

10. D

Name: _______

Algebra 2 Homework 7-4

For #1 - 8: a. Sketch the angle in standard position.

b. State the reference angle for each (if possible).

1. 150°

2. $\frac{11\pi}{6}$

3. $\frac{4\pi}{3}$

$$d = \frac{4\pi}{3} - \frac{3\pi}{3} = \frac{\pi}{3}$$

4. 2π

5. -135°

9. What quadrant is angle θ in if $\sin(\theta) = -.5$ and $\cos(\theta) < 0$? $\cos(-)$

10. On the unit circle, the terminal side of an angle θ passes through the point (a, -b).

Both a and b are positive. Which is not true?

a. $sin(\theta) = -b$

- c. $cos(\theta) = a$
- $\frac{\sin(\theta)}{\cos(\theta)} > 0$

Warm-Up:

P(5, 12) is a point on the terminal side of θ in standard position. Find the exact values of $\sin(\theta)$, $\cos(\theta)$, and $\tan(\theta)$.

$$\sin(\theta) = \frac{12}{13}$$

$$\cos(\theta) = \frac{5}{13}$$

$$\tan(\theta) = \frac{12}{13}$$

Finding Trig Values Given a Point:

* Remember that if a point is **on the unit circle**, the x-coordinate = $\frac{\cos(6)}{\cos(6)}$, the y-coordinate = $\frac{\sin(6)}{\cos(6)}$ and $\tan(\theta) = \frac{y_x = \sin(6)}{\cos(6)}$ of find $\angle \theta$, we find the reference angle first using the positive lengths of the triangle sides, and then put that angle into the correct quadrant to find $\angle \theta$.

Examples:

3. Point $A\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$ is on a unit circle with a center of the origin. If θ is an angle in standard position whose terminal side passes through A, find:

a. 3 sin (θ)

b. **1** cos(θ) **1**

 $d = \sin^{-1}(\sqrt{13}/2)$ $\theta = 340^{\circ} - 60^{\circ}$

4. P(8, -6) is a point on the terminal side of θ in standard position. Find the exact values of $sin(\theta)$, $cos(\theta)$ and $tan(\theta)$.

$$sin(\theta) = \frac{0}{h} = \frac{-6}{10} = \frac{-3}{5}$$

 $cos(\theta) = \frac{4}{h} - \frac{8}{10} = \frac{4}{5}$
 $tan(\theta) = \frac{0}{\alpha} = \frac{-6}{8} = \frac{-3}{4}$

5. P(-4, 5) is a point on the terminal side of θ in standard position. Find the exact values of $\sin(\theta)$, $\cos(\theta)$ and $\tan(\theta)$.

$$\sin(\theta) = \frac{5}{491}$$

$$\cos(\theta) = \frac{4}{491}$$

$$\tan(\theta) = \frac{5}{491}$$

6. P(-2, -3) is a point on the terminal side of θ in standard position. Find the exact values of $\sin(\theta)$, $\cos(\theta)$ and $\tan(\theta)$.

$$2^{3} + 3^{2} = X^{2}$$

$$\sqrt{13} = X^{2}$$

$$\sqrt{13} = X$$

$$sin(\theta) = \frac{-3}{113}$$
 $cos(\theta) = -\frac{3}{113}$
 $ton(\theta) = \frac{-3}{-2} = \frac{3}{2}$

Application Word Problems:

1. A bicycle wheel with a radius of 13" has a valve cap positioned at the highest point of the wheel. If the wheel is spun 750° in one direction, how high is the valve cap above the ground? Round your answer to the nearest tenth of an inch.

$$\frac{\sin(60^{\circ}) = \frac{x}{13}}{x = 13} \sin(60^{\circ} = 11.3^{"} + 13^{"})$$