HW 9-9

1.
$$h(t) = 350,000(1.02)^{t}$$
 $h(10) = 426648.05

2.
$$v(\dagger) = 20000(.90)^{\dagger}$$
 $v(10) = 7000

3. a. \$21,226

4. a

b. \$21612

5. b

c. \$21701

6. b

d. \$21745

7.7/4 or 15/4

Name_____ Alg 2 HW 9-9

- The price of a new home is \$350,000. The value of the home appreciates 2% each year.
 - a. Write a function to represent the value of the home, h, after t years.
 - b. How much will the home be worth in 10 years?

a.
$$h(+) = 350,000(1.02)$$

- 2. A car that was originally worth \$20,000 depreciates at a rate of 10% per year.
 - a. Write a function to represent the value of the car, v, after t years.
 - b. What is the value of the car after 10 years, to the nearest thousand dollars?

- 3. You have \$8000 to put in a savings account that earns 5% interest. Leaving the money untouched, find the total amount, to the nearest dollar, you will have after 20 years if the interest is compounded

a. Annually?
$$f(20) = 8000(1.05)^{20} = $21,226$$

b. Quarterly?
$$f(20) = 8000(1 + \frac{.05}{4})^{20(4)} = $21,612$$

c. Monthly?
$$f(20) = 8000(1 + \frac{.05}{12}) = $21,701$$

d. Daily?
$$f(20) = 8000(1 + \frac{.05}{365})^{20(9.5)}$$
 $\cdot 92|745$

- 4. Which of the following best describes the graph of $f(x) = \left(\frac{1}{5}\right)^{-x} \implies f(x) = 5^{x}$
 - a. It is an increasing function, and it approaches but never reaches the horizontal axis to the left of the origin.
 - b. It is an increasing function, and it approaches but never reaches the horizontal axis to the right of the origin.
 - c. It is a decreasing function, and it approaches but never reaches the horizontal axis to the left of the origin.
 - d. It is a decreasing function, and it approaches but never reaches the horizontal axis to the right of the origin

- 5. Which statement concerning the graph of the exponential function $y = 5^x$ is true?
 - a. The graph never intersects the graph of $y = 2^x$.
 - b. The graph passes through the point (0,1).
 - c. For x < 0, the graph can dip below the x-axis.
 - d. As x increases, the graph gets closer to the x-axis.

6. Brad sketches the graph of the exponential function f(x).

7. Using the graph in question 8, find the rate of

change over the interval $0 \le x \le 4$

$$\frac{3-(-4)}{4-0} = \frac{7}{4}$$

or
$$f(0) = 2^{\circ} - 5 = -4$$

 $f(4) = 2^{4} - 5 = 11$

Which exponential function could generate a graph of this form?

a.
$$f(x) = 2^x$$

c.
$$f(x) = 2^x + 5$$

b.
$$f(x) = 2^x - 5$$

d.
$$f(x) = 5 \cdot 2^x$$

Applications of Exponential Growth and Decay

Applications of Exponential Growth and Decay

Unit 9 Day 10

Warm-up:

Imagine we have a population of animals that grows by 3% per year. We release 200 of these animals into a wilderness preserve. How long would it take for the population to grow to 500 animals? Create a function and use your graphing calculator to evaluate.

The stock price of Windpower Inc. is increasing at a rate of 4% per week. Its initial value was \$20 per share. On the other hand, the stock price in Gerbil Energy is crashing (losing value) at a rate of 11% per week. If its price was \$120 per share when Windpower was at \$20, after how many weeks will the stock prices be the same? Model both stock prices using exponential functions. Then, find when the stock prices will be equal graphically. Draw a well-labeled graph to justify your solution.

Write a function for the stock price of each company:

Windpower Inc.: W(x) = 20(1.04)

Gerbil Energy: G(x) = 120(.89)

Windpower Inc

4

y 20 21.6 23.4 25.3 27.3 29.6 32

Gerbil Energy

y 2 4 6 8 10 12 y 20 95,1 75.3 59.6 47.2 37.4 29.6

Weeks

Ю

12

How many weeks will it take for the stock price of Windpower Inc. to be \$120/per share?

wks 45-46 (Per table)

How many weeks will it take for the stock price of Gerbil Energy to be \$20/per share?

WKS 15-16(Per table) prices be the same? 11.5 $\rightarrow \sqrt{12}$ Weeks

To the nearest week, when will the stock prices be the same?

Window

x-min _____

x-max <u>12</u> v-min

y-max ____

Let us say that Windpower Inc. stock in 2010 was \$25 per share. The company was extremely successful and their stock price was \$105 in 2015. Assuming exponential growth, approximate the annual growth rate, to the nearest percent.

$$A(t) = a(1 \pm r)^{\frac{1}{2}}$$

$$A(t) = a(1 \pm r)^{\frac{1}{2}}$$