Unit 10 Day 1 HW

Unit10 Day 1 HW

1. See table and graph on next slide

$$f^{-1}(x) = \log_{\frac{1}{3}} x$$

x = ('g)^y

Domain (0,∞)

Range $(-\infty, \infty)$

Original: y = 0

Inverse: x = 0

- 2. See table and graph on the next slide
- 3. Down 3
- 4. Right 5 and up 2
- 5. Left 2 and down 3
- <u>6.</u> A
- $7.a. 3^3 = 27$
 - b. $x^4 = 16$
 - c. $5^4 = 625$
 - d. 7× = 32
- 8.a. log₄256 = b
 - b. $\log_{x}17 = 2.1$
 - c. $log_7 1 = 0$
 - d. $log_38.2 = x$

1. Graph $f(x) = \left(\frac{1}{3}\right)^x$ and its inverse.

What is the equation of the inverse? $f^{-1}(x) = \log_{\frac{1}{3}} X$

What is the domain and range of the inverse?

Domain
$$(0, \infty)$$
Range $(-\infty, \infty)$

What are the asymptotes of the original and inverse equations?

Original
$$y = 0$$
Inverse $x = 0$

- 3. Down 3
- 4. Right 5 and up 2
- 5. Left 2 and down 3
- 6. Which statement is false about the graph $c(x) = \log_6 x$?
 - a. The asymptote has an equation y
 - b. The graph has no y-intercept
 - c. The domain is the set of positive reals
 - d. The range is the set of all real numbers

b.
$$\log_{x} 16 = 4$$

c. $\log_{5} 625 = 4$
d. $\log_{7} 32 = x$

$$\frac{5^{4} - 625}{7^{4} - 32}$$

8. Write the following in logarithmic form

a.
$$4^b = 256$$

a.
$$4^{b} = 256$$
 $\log_{4} 256 = b$
b. $x^{2.1} = 17$ $\log_{4} 17 = 2.1$

c.
$$7^0 = 1$$

d.
$$3^{\times} = 8.2$$

Solving Exponential and Logarithmic Equations

Solving Exponential and Logarithmic Equations

Unit10 Day 2

Warm-Up: Powers to Memorize:

Base	Power	2	3	4	5	6
2		4	8	16	32	64
3		9	27	81	243	
4		16	64	256	×	
5		25	125	625	x	

An <u>exponential equation</u> is an equation in which the variable is in the exponent.

When bases are not the same, follow these steps:

Steps:

- Express each side of the equation in terms of the same base.
- 2. Set the exponents equal.
- 3. Solve.

Example:

$$2^{x} = 64$$

$$2^{x} = 2^{b}$$

$$x = 64$$

Solve for x.

1.
$$3^{x} = 27$$

$$3^{x} = 3^{3}$$

$$x = 3$$

4.
$$9^{2x+1} = 27$$
 $(3^2)^{x+1} = 3$
 $4x+2 = 3$
 $4x+2 = 3$
 $4x+2 = 3$
 $4x = 1$
 $x = 1$
 $x = 1$

3.
$$4^{x} = 16^{2x-3}$$
 $4^{x} = (4^{3})^{2x-3}$
 $4^{x} = (4^{3})^{2x-3}$
 $4^{x} = 4^{x-6}$
 $4^{x} = 2^{x-6}$
 $4^{x} = 2^{x-6}$

5.
$$125^{x} = (\frac{1}{25})^{4-x}$$

 $(5^{3})^{x} = (5^{-1})^{4-x}$
 $5^{3x} = (5^{-1})^{4-x}$

- 6. Which of the following represents the solution set to the equation $2^{x^2-3} = 64$?
- (1) {±3}

(3) $\{\pm\sqrt{11}\}$

 $2^{x^2-3}=2^6$

(2) {0,3}

(4) $\{\pm\sqrt{35}\}$

 $x^{2}-3=6$ $\sqrt{x^{2}}=\sqrt{9}$ $x=\pm 3$

Solve each equation for x:

Step 1: Put into exponential form

Step 2: Solve for x.

1.
$$2 = \log_{x} 16$$

 $x = \pm 4$ every $x = 4$
 $x = 4$ $= 4$

3.
$$2 = \log_8 x$$

 $8^2 = X$
 $64 = X$
 5643

2.
$$x = \log_{4} 64$$

 $4^{x} = 64$
 $4^{x} = 4^{3}$
 $x = 3$ $\{3\}$

4.
$$\log_3 81 = x$$

 $3^x = 81$
 $3^x = 3^4$
 $x = 4^x =$

Evaluate:

- Step 1: Set expression equal to x.
- Step 2: Put into exponential form.
- Step 3: Solve for x.

1.
$$\log_3 9 = \chi$$

$$3' = 9$$

$$\chi = 2$$

3.
$$\log_6 \frac{1}{36} = \chi$$

 $6^x = \frac{1}{36}$
 $6^x = 6^{-2}$

5.
$$\log_2 2 = \chi$$

$$2^{\chi} = 2$$

7.
$$\log_{27} 3 = x$$
 $27 = 3$
 $27 = 3$
 $27 = 3$
 $27 = 3$

2.
$$\log_5 1 = \chi$$

$$5^{\chi} = 1$$

4.
$$\log_5 125 = \%$$

 $5^{x} = 125$

6.
$$\log_{3}\sqrt{3} = \chi$$

 $3^{x} = \sqrt{3}$
 $3^{x} = 3^{1/2}$

8.
$$\log_{1/4} \frac{1}{16} = x$$

$$(\frac{1}{4})^{x} = \frac{1}{16}$$