	Even Degree	Odd Degree
Positive Leading Coefficient	.\\	
Negative Leading Coefficient		

Z	M	T/C

Find the zeros of the polynomial, state the multiplicity of each. Sketch (including the end behavior)

$$P(x) = x(x + 3)^2(x - 1)$$

Sketch:

Degree: _____

End Behavior:

Use long division to find the quotient (Q(x)) and remainder (R(x)). Verify your remainder with the remainder theorem.

 $(2x^{3} + 5x^{2} + 3x - 4) \div (x + 2)$ $D \frac{2x^{3}}{x} = 2x^{2} \frac{x^{2}}{x} = x$ $M 2x^{2}(x+2) = 2x^{3} + 4x^{2} x(x+2)$ S Negate both terms

 $P(-2) = 2(-2)^{3} + 5(2)^{2} + 3(-2) - 4$ = 46 + 20 - 6 - 4 = -6

 $\frac{- x^2 + 2x}{x - 4}$ or answer. $\frac{- x + 2x}{x - 4}$

Is (x+2) a factor of $2x^3 + 5x^2 + 3x - 4$? Explain your answer.

No b/c The Remainder \neq 0