Regents Review #9 - Inference, Experimental Design, Regression Section # 24 1. | | Random Selection | Random Assignment | | |-------------------------------|------------------|-------------------|--| | Used in experiments | Sometimes | | | | Used in observational studies | | | | | Allows generalization to the | | | | | population | V | | | | Allows a cause and effect | | | | | conclusion | | | | | 2. | Experiment: | × | Treatment | w | Random | a3549 | nment | | |----|--------------|-------|-----------------------|---|--------|-------|-------------------|------| | | | - | Treatment
Measured | 7 | sporte | * | Determines | ce 4 | | | Observations | J C+, | ide. | | | | cause 4- | अस्य | -No treatment -Includes Euruey - Can not determine cause t effect part of a population The entire group being studied Population: 4. 95% Confidence Interval: Margin of Error: - 5. If value is within your confidence interval, there's nothing unusual → NOT Statistically Significant If value is outside of your confidence interval, then it's unusual → Statistically Significant - 6. Closer your value is to the mean, the more consistent it is with your data (higher the probability), there's nothing unusual \rightarrow NOT Statistically Significant Further your value is from the mean, the more unusual it becomes (lower the probability)-Statistically Significant Regents Review #10 - Normal Distributions, Probability, Average Rate of Change a. The distribution of lifetimes of a particular brand of car tires has a mean of 51,200 miles and a standard deviation of 8,200 miles. Assuming that the distribution of lifetimes is approximately normally distributed and rounding your answers to the nearest thousandth, find the probability that a randomly selected tire lasts between 55,000 and 65,000 miles. $$Z_{56} = \frac{55,000 - 51,200}{8,200} = .4634$$ $$Z_{65} = \frac{65,000 - 51,200}{8,200} = 1.6829$$ normaled+(.4634, 1.6829) 2. Independence: one event does not affect another Mutually Exclusive (Disjoint): Complement: $P(A) = 1 - P(A^c)$ $P(A^c) = 1 - P(A^c)$ opposite cx: rain and no rain - o prove independence: prove independence: a. Using Conditional Probability: P(A|B) = P(A|B) = P(A|B) - b. Using Multiplication Rule: $P(A \cap B) = P(A \cap B)$ ## Example: Given events A and B, such that P(A) = 0.6, P(B) = 0.5, and $P(A \cup B) = 0.8$, determine whether A and B are independent or not independent. $$P(A \stackrel{?}{\sim} B) = P(A) + P(B) - P(A \text{ and } B)$$ $$\cdot 8 = \cdot C + \cdot 5 - P(A \cap B)$$ $$P(A \cap B) = \cdot 3$$ 4. Average Rate of Change = $$\frac{by}{bx} = \frac{(a) - (b)}{a - b}$$ dependent or not independent. $$P(A \stackrel{?}{\sim} B) = R(A) + P(B) - P(A \stackrel{?}{\sim} AB)$$ $$R(A) \stackrel{?}{\sim} B = .6 + .5 - P(A \cap B)$$ $$P(A \cap B) = .3$$ 4. Average Rate of Change = $\Delta Y = R(A) - R(B)$ $$R(A) \stackrel{?}{\sim} P(A \cap B) = .3$$