Regents Review #9 - Inference, Experimental Design, Regression

Section # 24

1.

	Random Selection	Random Assignment	
Used in experiments	Sometimes		
Used in observational studies			
Allows generalization to the			
population	V		
Allows a cause and effect			
conclusion			

2.	Experiment:	×	Treatment	w	Random	a3549	nment	
		-	Treatment Measured	7	sporte	*	Determines	ce 4
	Observations	J C+,	ide.				cause 4-	अस्य

-No treatment
-Includes Euruey
- Can not determine cause t effect

part of a population

The entire group being studied Population:

4. 95% Confidence Interval:

Margin of Error:

- 5. If value is within your confidence interval, there's nothing unusual → NOT Statistically Significant If value is outside of your confidence interval, then it's unusual → Statistically Significant
- 6. Closer your value is to the mean, the more consistent it is with your data (higher the probability), there's nothing unusual \rightarrow NOT Statistically Significant

Further your value is from the mean, the more unusual it becomes (lower the probability)-Statistically Significant

Regents Review #10 - Normal Distributions, Probability, Average Rate of Change

a. The distribution of lifetimes of a particular brand of car tires has a mean of 51,200 miles and a standard deviation of 8,200 miles. Assuming that the distribution of lifetimes is approximately normally distributed and rounding your answers to the nearest thousandth, find the probability that a randomly selected tire lasts between 55,000 and 65,000 miles.

$$Z_{56} = \frac{55,000 - 51,200}{8,200} = .4634$$

$$Z_{65} = \frac{65,000 - 51,200}{8,200} = 1.6829$$
normaled+(.4634, 1.6829)

2. Independence: one event does not affect another

Mutually Exclusive (Disjoint): Complement: $P(A) = 1 - P(A^c)$ $P(A^c) = 1 - P(A^c)$ opposite cx: rain and no rain

- o prove independence: prove independence:

 a. Using Conditional Probability: P(A|B) = P(A|B) = P(A|B)
 - b. Using Multiplication Rule: $P(A \cap B) = P(A \cap B)$

Example:

Given events A and B, such that P(A) = 0.6, P(B) = 0.5, and $P(A \cup B) = 0.8$, determine whether A and B are independent or not independent.

$$P(A \stackrel{?}{\sim} B) = P(A) + P(B) - P(A \text{ and } B)$$

$$\cdot 8 = \cdot C + \cdot 5 - P(A \cap B)$$

$$P(A \cap B) = \cdot 3$$

4. Average Rate of Change =
$$\frac{by}{bx} = \frac{(a) - (b)}{a - b}$$

dependent or not independent.

$$P(A \stackrel{?}{\sim} B) = R(A) + P(B) - P(A \stackrel{?}{\sim} AB)$$

$$R(A) \stackrel{?}{\sim} B = .6 + .5 - P(A \cap B)$$

$$P(A \cap B) = .3$$

4. Average Rate of Change = $\Delta Y = R(A) - R(B)$

$$R(A) \stackrel{?}{\sim} P(A \cap B) = .3$$

$$R(A) \stackrel{?}{\sim} P(A \cap B) = .3$$