4-3 HW Answer Key

17. 12i√2

i⁸ = ____**1**____

i⁹ = ____i ____

i¹⁰ = ___**-1**_____

i¹¹ = ____-i _____

14.
$$x = -3, y = -5$$

18. See attached for graph.

Alg 2 Homework 4-3

Simplify the following:

Simplify the following:

1.
$$i^{33} = \frac{1}{1 \cdot 1} = \frac{1}{1 \cdot 1}$$
2. $i^{425} = \frac{1}{1 \cdot 1} = \frac{1}{1 \cdot 1}$
3. $i^{51} = \frac{1}{1 \cdot 1} = \frac{1}{1 \cdot 1}$
4. $i^{64} = \frac{1}{1 \cdot 1}$
5. $-i^{11} = \frac{1}{1 \cdot 1} = \frac{1}{1 \cdot 1}$

6.
$$i^{18} = \frac{1^{16} i^{2} - 1}{10 \cdot 10^{10}} = \frac{5 \cdot 1^{10} - 5}{10 \cdot 10^{10}} = \frac{5 \cdot 1^{10} - 5}{10 \cdot 10^{10}} = \frac{5 \cdot 1^{10} - 5}{10 \cdot 10^{10}} = \frac{1^{12} - 1}{10 \cdot 10^{10}} = \frac{1^{12} \cdot 1^{12} - 1}{10 \cdot 10^{10}} = \frac{1^{12} \cdot 1^{12}}{10 \cdot 10^{10}} = \frac$$

Express each of the following in a + bi form.

Find the real values of x and y.

13.
$$3x + 6yi = 24 + 18i$$

 $3X - 24$ $6y = 18$
 $X - 8$ $y - 3$

14.
$$5(x-1) + 3yi = -15i - 20$$

 $5x-5 = -20$ $3y=-15$
 $5x=-15$ $y=-5$
 $x=-3$

Solve for x and put your answer in a + bi form.

15.
$$2x^{2} + 72 = 0$$

 $3x^{2} = 7a$
 $x^{2} = 36$
 $x = \pm 6i$

16.
$$4x^{2} + 16 = 0$$
 $4x^{2} = -16$
 $x^{2} = -4$
 $x = \pm 3i$

Simplify.

Graph and label the corresponding points on the complex plane.

- a. -3i
- b. 4+6i
- c. -5
- d. -1 i
- e. 0 + 10i
- f. 7 0i
- g. 2 4i
- h. -8 + 6i

Complex numbers as solutions to equations

Algebra 2 Unit 4 Day 4

Today, we are going to use the quadratic formula to solve quadratic equations.

Recall the quadratic formula:

The discriminant is the number under the radical or _____

Working with your partner, <u>determine the discriminant</u> and then solve the following quadratic equations <u>using the quadratic formula</u>.

1.
$$x^2 - 9 = 0$$

$$b^{-44}(=36-4(1)(9)$$

$$x = 6 \pm 10$$

$$= 6 \pm 10$$

$$= 6 \pm 36$$

b=40(=0-4(1)(9) =-36 X=<u>0±√-36</u> 2(1) = ±6i = ±8i

How does the value of the discriminant relate to the solutions you found?

4

Complex numbers as solutions to equations

Algebra 2 Unit 4 Day 4

Today, we are going to use the quadratic formula to solve quadratic equations.

Recall the quadratic formula:

The discriminant is the number under the radical or ____

Working with your partner, determine the discriminant and then solve the following quadratic equations using the quadratic formula.

a = 1 b = 0 = -91. $x^2 - 9 = 0$

 $\begin{array}{ll}
1. & x^{2}-9=0 \\
b^{2}-4ac=0-4(1)(-9) \\
&= 36
\end{array}$ $\chi = \frac{0\pm\sqrt{36}}{2(1)} = \frac{\pm6}{2}$ $\chi = \pm3$ $\begin{array}{ll}
2. & x^{2}-6x+9=0 \\
b^{2}-4ac=36-4(1)(9)
\end{array}$ $\chi = \frac{6\pm\sqrt{0}}{2(1)}$ $= \frac{6\pm\sqrt{0}}{2(1)}$ $= \frac{6\pm\sqrt{0}}{2(1)}$

How does the value of the discriminant relate to the solutions you found?

If b^-tac <0, the solutions will be inegenary (complex

Of b^-tac =0, we will have | Real solution (2 equals

S b^-tac >0, the solution will be 2 Real solutions

Using your graphing calculator, sketch a graph of each of the quadratic equations from above.

 $2. x^2 - 6x + 9 = 0$

3. $x^2 + 9 = 0$

Conclusions:

Real solution **5.** When the graph intersects x-axis only once, then there is _

and the discriminant is ___2ero

When the graph intersects x-axis twice, then there are 2 Real Bolitary, and the discriminant is positive (> 0)

When the graph does not intersects x-axis, then there are <u>Cosuplex</u> (<u>imag.</u>) Roots and the discriminant is <u>Negative</u> (<0)

For 1-7 do the following:

- 1. Compute the value of the discriminant of the quadratic equation.
- 2. Use the value of the discriminant to predict the number and type of solutions.
- 3. Find all real and complex solutions.

Do first one together:
1.
$$3x + x^2 = -7 \Rightarrow x^2 + 3x + 7 = 0$$

 $b^2 - 4ac = 9 - 4(1)(7) = 9 - 28 = -19$ Compax Solutions

$$x = \frac{-3 \pm \sqrt{-19}}{2(1)} = \frac{-3 \pm i\sqrt{19}}{2}$$

$$x = \frac{-3 \pm \sqrt{-19}}{2(1)} = \frac{-3 \pm i\sqrt{19}}{2}$$

$$x = \frac{-3 \pm \sqrt{-19}}{2} = \frac{-3 \pm i\sqrt{19}}{2}$$

Work on the following individually, checking your answers with your partner as you complete each one. 2. $x^2 + 4 = 0$

$$b^{2}-4ac=0-4(i)(4)$$

$$= -16$$

$$2 Complex Solutions$$

$$= \pm 4i$$

$$= \pm ai$$

$$5 \pm ai$$

3.
$$x^2 + 2x + 1 = 0$$

 $b^2 - 40c = 4 - 4(1)(1)$
 $= 0$

I real solution

$$x = -\frac{3}{3}$$

$$= -\frac{3}{3}$$

$$= -\frac{3}{3}$$

$$= -\frac{3}{3}$$

4.
$$3x^2 + 4x + 2 = 0$$

$$b^{2}-40c = 10-4(3)(2)$$
= -8

2 complex solutions

$$X = -\frac{4 \pm \sqrt{-8}}{a(3)}$$

$$= -\frac{4 \pm i\sqrt{4}\sqrt{a}}{6}$$

$$= -\frac{4 \pm i\sqrt{a}}{3}$$

$$= -\frac{3 \pm i\sqrt{a}}{3}$$

5.
$$x = 2x^{2} + 5$$

 $\partial X^{3} - X + 5 = 0$
 $\partial^{3} - 4ac = 1 - 4(a)(5)$
 $= -39$

2 complex solutions

$$X = 1 \pm \sqrt{-39}$$

$$a(a)$$

$$= 1 \pm i\sqrt{39}$$

$$4$$

$$5 + \pm i\sqrt{39}$$

6.
$$9x^2 - 4x - 14 = 0$$

2 real solutions

$$X = 4 \pm \sqrt{520}$$

$$= 4 \pm \sqrt{4} \sqrt{130}$$

$$= 4 \pm \sqrt{4} \sqrt{130}$$

$$= 2 \pm \sqrt{130}$$

$$= 2 \pm \sqrt{130}$$

$$= 2 \pm \sqrt{130}$$

7.
$$\frac{8x^2 + 4x + 32 = 0}{4}$$
 (Note: Easier if you factor first)

$$4 = 2x^2 + x + 8 = 0$$

$$5^2 - 4a(=1-4(a)(8)) = -1 \pm i\sqrt{9}\sqrt{7}$$

$$= -63$$

$$= -1 \pm i\sqrt{9}\sqrt{7}$$

$$= -1 \pm 3i\sqrt{7}$$

$$= -1 \pm 3i\sqrt{7}$$

$$= -1 \pm 3i\sqrt{7}$$

$$= -1 \pm 3i\sqrt{7}$$