Unit 10 HW 9 Tonight's HW: #1-b-b: Solve Algebraically (a) \$1001.86 @ {.2197} (b) 15 years 3) t = 31.4 years (c) 7,7% Jan 30-6:14 PM Name Alg 2 CC Unit10 Day9 HW Solve each equation using natural logarithms. Round your solution to the nearest ten-thousandth. $4e^{2x} - 11 = 17$ $\frac{+11}{4e^{2x}} + \frac{11}{28} = \frac{1}{2} \times \frac{1}{2} = \frac{1}{2}$ $e^{5x} = 3$ $e^{2x} = 7$ $x = 9730 = \frac{5x \ln e}{5} = \frac{1}{3}$ x = .2197 3. How many years, to the nearest tenth of a year, would it take for \$2500 to triple if it is earning a continuous compound interest of 3.5% per year? $\frac{7500}{2500} \div \frac{2500}{2500} = \frac{.035t}{2500}$ t = 31.4 years In 3 - . 035t Ine In 2014, the population of Georgia was 9.36 million people. In 2007 it was 8.18 million. Use N = Nekt. a. Determine the value of k, Georgia's relative rate of growth. (to 4 decimal places) $$\frac{9.36}{8.18} = \frac{8.18e^{7k}}{8.18}$$ $$\frac{9.36}{8.18} = \frac{7k}{7}$$ $$\frac{19}{7} = \frac{7k}{7}$$ b. When will Georgia's population reach 10 million people? (Use the value of k from part a) Round your answer to the nearest tenth of a year. $$\frac{10 = 8.18 e^{.0193t}}{8.18} = \frac{10.4 \text{ years}}{.0193}$$ $$\frac{\ln \left(\frac{10}{8.18}\right)}{.0193} = \frac{.0193t \ln c}{.0193}$$ Jan 30-6:16 PM - 5. Use the formula for continuously compounded interest. - a. If you deposited \$800 in an account paying 4.5% interest compounded continuously, how much money would be in the account in 5 years? b. How long, to the nearest year, will it take to double your money? If you want to double your money in 9 years, what rate would you need? Round your rate to the nearest tenth of a percent. $$\frac{1600 = 800 e^{9r} \ln 2 = 9r \ln e}{800} = \frac{100}{9} =$$ ## More Applications of Logarithms $$B(t) = ab^{t} b = half\left(\frac{1}{2}\right), dbl(2), triple(3)$$ $$A(t) = a(1 \pm r)^{t} A = Pe^{rt}$$ $$A(t) = a \left(1 \pm \frac{r}{n}\right)^{nt} \qquad N(t) = N_0 e^{kt}$$ Jan 30-11:53 AM More Applications of Natural Logarithms Unit10 Day10 A hot liquid is cooling in a room whose temperature is constant. Its temperature can be modeled using the exponential function shown below. The temperature, T, is in degrees Fahrenheit and is a function of the number of minutes, m, it has been cooling. $$T(m) = 101e^{-0.03m} + 67$$ (a) What was the initial temperature of the water at m = 0. Do without using your calculator. (c) Using the natural logarithm, determine algebraically when the temperature of the liquid will reach 100 °F. Show the steps in your solution. Round to the nearest tenth of a minute. $$100 = 101e^{-0.03m} + 67$$ $$\frac{-67}{33} = 101e^{-0.03m}$$ $$101 \quad 101$$ $$1n\left(\frac{33}{101}\right) = 1ne^{-0.03m}$$ $$1n\left(\frac{33}{101}\right) = -0.03m$$ $$1n\left(\frac{33}{101}\right) = -0.03m$$ $$1n\left(\frac{33}{101}\right) = -0.03$$ (b) How do you interpret the statement that T(60) = 83.7? At 60 minutes, the temperature of the liquid is 83.7°F (d)On average, how many degrees are lost per minute over the interval $10 \le m \le 30$? Round to the nearest tenth of a degree. Rate of Change $$\triangle y$$ $T(30) = 101e^{-0.03(30)} + 67 = 108.06$ $T(10) = 101e^{-0.03(10)} + 67 = 141.82$ $\frac{T(30) - T(10)}{30 - 10} = \frac{108.06 - 141.82}{20}$ = 1.7 degrees per minute Jan 30-11:48 AM Amy and Mark earned a stipend working at a summer camp. They both decided to invest their earnings. Amy earned \$5000 as the camp director and Mark earned \$3000 as a camp counselor. They both wanted their investment to be compounded continuously so they did their research and invested their money. Amy was able to invest her money at 4% compounded continuously and Mark was able to invest his money at 7% compounded continuously continuously. 15 Write two functions, A(t) and M(t), to represent their investments. 16 Graph each function on the set of axes below. 17 M(t) = 3000 e .07t 18,000 1900 11,000 11, Jan 30-11:51 AM 3. To the nearest year, when will Mark's investment start to exceed Amy's investment. Using the graph, use 2nd > Trace > Intersect 17 years 4. How long will it take, to the nearest tenth of a year, for the both of them to double their investments? Only algebraic solutions are acceptable. Jan 30-6:35 PM