1-11 HW Answer Key

1. 64, {3, 1/3}

2. 29, $\left\{\frac{3\pm\sqrt{29}}{2}\right\}$

3. 153, $\left\{ \frac{-7 \pm 3\sqrt{17}}{4} \right\}$

4. 97, $\left\{ \frac{-7 \pm \sqrt{97}}{-6} \right\}$ or $\left\{ \frac{7 \pm \sqrt{97}}{6} \right\}$

5. 1.4 seconds

6. $(y-8)(y^2+8y+64)$

7. {-1, 5}

8. {0, 1/2}

9. {-2, 1/2}

10. $2a^2b^2-3b^3c-b^4-2a^3+3abc+ab^2$

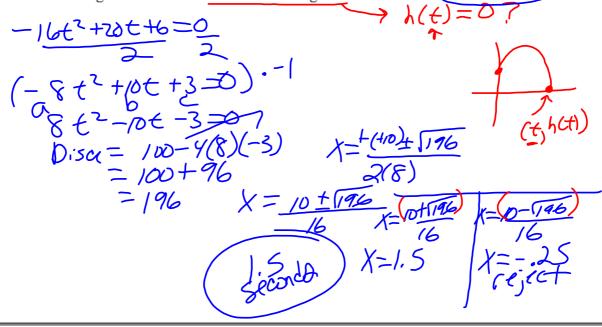
Aug 28-12:44 PM

Find the zeros/roots of the functions/equations using the quadratic formula. Leave all solutions in simplest radical form. Find the discriminant first $x^{2} - \frac{1}{2}x^{2} = \frac{1}{2}(x^{2} - x^{2}) - 5 = 0$ $x^{2} - 3x = 5 = 0$ $0 : 50x = (-3)^{2} - 4(1)(-5) = 9 + 20$ 0 : 291. $f(x) = 3x^2 - 10x + 3$ $3x^2 - 10x + 3 = 0$ Discr=(-10)24(3)(3) =100-36 $X = \frac{(-3)^{1/29}}{2(1)} = \frac{3 \pm 1/29}{2}$ X=-(-10) \$164 31/29 3 $3. 2x^2 + 7x - 13 = 0$ bisa = (7)2-4(2)(-13) =49+104 =(53) X= -7 + 1153 = -7 + 19/17 5. In a shot put event, Jamie tosses her last shot from a position of about 5' above the ground with an initial vertical and horizontal velocity of 18 ft/sec. The height of the shot is modeled by the function $h(t) = -16t^2 + 18t + 5$, where t is the time in seconds after the toss. Algebraically determine how long it takes the shot to reach the ground. Round to the nearest tenth, $X = 1\% \pm \sqrt{649}$ Round to the nearest tenth.

(2) $-|6t^2+|8t+5=0$ $|6t^2+|8t+5=0$ $|6t^2-|8t-5=0$ $|6t^2-|8t-$ X = 18 ± 1644 2(16) 32 X=1.355 1.4 seconds

Sep 1-4:35 PM

6. Factor
$$y^3 - 512$$
. $= (y - 8)(y^2 + 8y + 64)$


Solve the following by factoring.

7. $x^2 - 4x = 5$
 $x = 0$
 $x = 0$


Sep 1-4:36 PM

You can use the quadratic formula to solve real-world problems modeled by quadratic functions.

6. In a shot put event, Jenna tosses her last shot from a position of about <u>6' above the</u> ground with an initial vertical and horizontal velocity of 20 ft/sec. The <u>height of the shot</u> is modeled by the function $h(t) = -16t^2 + 20t + 6$, where <u>t</u> is the time in seconds after the toss. How long does it take the shot to reach the ground? Round to the nearest tenth.

Aug 28-12:41 PM

Aug 13-2:30 PM

1-12: Solve Quadratic Equations Using the Square Root Property and Completing the Square

Monday: Quiz on solving with the Quadratic Formula & today's Completing the Square.

$$x^{2} = 12x - 20$$

$$x^{2} = 12x - 30$$

$$x^{2} = 12x - 30$$

$$x^{2} = 136$$

$$x^{3} = -20 + 36$$

$$x^{4} = 16$$

$$x^{2} = -60 = 36$$

$$x^{2} = 16$$

$$x^{3} = 16$$

$$x^{4} = 16$$

$$x^{5} = 16$$

 $\frac{2}{12}$ $\frac{136}{36}$ = -20 $\frac{136}{36}$ $\frac{12}{5}$ $\frac{12}{5}$ $\frac{13}{5}$ $\frac{13}{5}$

1. Coefficient of x2 must be 1

(÷ by "a" if necessary, there can be no "a" coefficient!)

- 2. Get equation into the form: $x^2 + bx = constant$
- 3. Divide linear term (b) by 2 and then square it.
- 4. Add that number from step 3 to both sides
- 5. Factor left side (Looks like: $\left(x + \frac{b}{2}\right)^2 = \underline{\hspace{1cm}}$)
- 6. Take square root of both sides (Don't forget ±)
- 7. Solve for "x" (2 cases)

Aug 13-2:31 PM

1.
$$\frac{3x^2 - 24x = 27}{3}$$
 $\frac{3x^2 - 24x = 27}{3}$ \frac

2)
$$18x+3x^2 = 45$$
 3
 $2+6x+19 = 15+19$
 $1(x+3)^2 = 124$
 $2+3=146$
 $2+3=146$
 $2+3=146$
 $3+3=146$
 $3+3=146$

Choosing which method to use to solve quadratics takes as much skill as being able to use these methods. This chart may help.

Summary of Solving Quadratic Equations		
Method	When to Use	Examples
Factoring	c = 0 or the expression is easily factorable.	$x^{2} + 4x + 3 = 0$ $(x + 3)(x + 1) = 0$ $x = -3 \text{ or } x = -1$
Square roots	The variable side of the equation is a perfect square.	$(x-5)^2 = 24$ $\sqrt{(x-5)^2} = \pm\sqrt{24}$ $x-5 = \pm2\sqrt{6}$ $x = 5 \pm 2\sqrt{6}$
Completing the square	a = 1 and b is an even number.	$x^{2} + 6x = 10$ $x^{2} + 6x + \blacksquare = 10 + \blacksquare$ $x^{2} + 6x + \left(\frac{6}{2}\right)^{2} = 10 + \left(\frac{6}{2}\right)^{2}$ $(x + 3)^{2} = 19$ $x = -3 \pm \sqrt{19}$
Quadratic Formula	Numbers are large or complicated, and the expression does not factor easily.	$x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4(5)(-8)}}{2(5)}$ $x = \frac{7 \pm \sqrt{209}}{10}$

Which method do you like the best? Why?

Sep 22-4:15 PM