Warm-Up:

$$y = x^2 - 2x + 3$$

$$y = -x + 5$$

Sep 24-9:44 AM

Warm-Up:

Consider the system of equations below. Find the solution.

$$y = x^{2} - 2x + 3$$

$$y = x^{2} - 2x + 3$$

$$y = x^{2} - 2x + 3$$

$$(x-2)(x+1) = 0$$

$$y = x^2 - 2x + 3$$
 $y^2 - x - \lambda = 0$

$$y = -x + 5$$
 $\chi = \lambda$

$$y=-2+5$$
 $y=-(-1)+5$
 $y=3$ $y=6$

(23)

§ (2,3),(-1,6)}

The number i

Algebra 2 Unit 4 Day 1

On your own, solve each equation for x.

3.
$$x^2 - 1 = 0$$
 $X^2 = 1$ $X = \frac{1}{2}$

1.
$$x-1=0$$
 $X=1$
2. $x+1=0$ $X=-1$
3. $x^2-1=0$ $X^2=1$ $X=\pm 1$ $X=\pm 1$

4.
$$\chi^2 + 1 = 0$$
 $\chi^2 = -1$ $\chi = \pm -1$

$$\int_{5.}^{2} x^{2} + 2 = 0$$
 $(x) = -2$

3. $x^{2}-1=0$ $X^{2}=1$ X=-14. $x^{2}+1=0$ $X^{2}=-1$ $X=\pm 1-1$ 5. $x^{2}+2=0$ X=-2 $X=\pm 1-2$ $X=\pm 1-2$ $X=\pm 1-2$ $X=\pm 1-2$ $X=\pm 1-2$

Which ones above do not have a real number solution? Why?

Sep 1-1:53 PM

In fact, solving the equation $x^2 + 1 = 0$, we got $x = \pm \sqrt{-1}$.

This leads to $i = \sqrt{-1}$.

Problem:)There is no real number that is the square root of a negative real number.

Solution: The number ______.

Ifr>0, (-1 =)-1. (= i/c

 $(1-1)^2 = -1$ We let $\sqrt{-1} = \underline{c}$, then $i^2 = \underline{-1}$.

Definition: A pure imaginary number is a number that can be written in the form b_i where $b \in \mathbb{R}$ and i = [-]

b #0

b is an element of the real # system

Rules of i:

- Change all expressions of the form $\sqrt{-b}$ to $\sqrt[1]{b}$ first 2. Treat i as a variable for addition and subtraction.
- 3. Substitute -1 for i ²

Simplify:

- $1. \sqrt{-9} = (19 3c)$
- 2. $-\sqrt{-100} = -i \sqrt{100} = -10i$
- $3.\sqrt{-20} = i \sqrt{5} = 2i \sqrt{5}$
- 4. $2\sqrt{-27} = 2i \sqrt{13} = 6i \sqrt{3}$

Sep 1-1:55 PM

Note: In the real number system $\sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b}$. However, this is not the case when working with imaginary numbers. Example: Simplify the following using a)rules for real numbers and then b)rules for i. b) $\sqrt{-4} \cdot \sqrt{-25}$ a) $\sqrt{-4} \cdot \sqrt{-25}$ $= 2i \cdot 5i$ $i^2 = -1$ =114.15 = 1-4 - - 25 = 1061)=(10 What do you notice? The anowers are opposited Simplify: $5.\sqrt{-9}\cdot\sqrt{-16}=(\sqrt{9}\cdot\sqrt{16})=3i\cdot 4i=12i^2=12(-1)=-12$ 6. $\sqrt{5} \cdot \sqrt{-10} = \sqrt{5} \cdot i \sqrt{10} = i \sqrt{50} = i \sqrt{25} \sqrt{2} = 5i \sqrt{2}$ 7. - \(-6 \(\sqrt{15} = -\)\(\in \sqrt{15} = -\)\(\in \sqrt{10} = -\)\(\in \sqrt{10 8. $(\sqrt{-7})^2 = \sqrt{49 - 7}$ $(i\pi)^2 = i\pi \cdot i\pi = i^2/9 = i^2 \cdot 7 = 7i^2 = 7(-1) = (-7)$ $(7-1)^2 = (-7)$

Day 1 per8-9.notebook	October 25, 2019