4-1 HW Answer Key

√-1

2. -1

3. i√r

- 4. 7i
- 12. 50i
- 5. -9i
- 13. 2i
- 6. 2i√6
- 14. –4i√2
- 7. 6i√5
- 15. 12i
- 8. -12
- 16. $x = \pm i\sqrt{5}$
- 9. 2i√<u>15</u>
- 17. $x = \pm 6i$
- 10. –3i√5
- 18. There is no real number that you can multiply by itself and get a negative number. For example, $2 \cdot 2 = 4$; $-2 \cdot -2 = 4$.
- 11.-11

Sep 1-1:38 PM

Name Resident Alg 2 Homework 4-1

1. $i = \sqrt{1}$ 2. $i^2 = \sqrt{1}$ 3. $\sqrt{-r} = i\sqrt{r}$ Simplify:

4. $\sqrt{-49} = \sqrt{1}i$ 5. $-\sqrt{-81} = -9i$ 6. $\sqrt{-24} = i\sqrt{4} \sqrt{6} = 2i\sqrt{6}$ 7. $2\sqrt{-45} = 2i\sqrt{9}\sqrt{5} = (0i\sqrt{5})$ 8. $\sqrt{-4} \cdot \sqrt{-36} = 2i((0i) = |2i|^2 - |2(-1)| = -|2|$ 9. $\sqrt{6} \cdot \sqrt{-10} = \sqrt{6} \cdot i\sqrt{10} = i\sqrt{60} = i\sqrt{4} \sqrt{15} = 2i\sqrt{15}$ 10. $-\sqrt{-3} \cdot \sqrt{15} = -i\sqrt{3}\sqrt{5} = -i\sqrt{45} = -i\sqrt{9}\sqrt{5} = -3i\sqrt{5}$ 11. $(\sqrt{-11})^2 = -1$ 12. $5\sqrt{-100} = 5i\sqrt{100} = 5i(10) = 50i$ 13. $\frac{1}{2}\sqrt{-16} = \frac{1}{2}i\sqrt{16} = \frac{1}{2}i\sqrt{16} = -4i\sqrt{2}$ 14. $-\sqrt{-32} = -i\sqrt{16}i\sqrt{2} = -4i\sqrt{2}$ 15. $\sqrt{-144} = \sqrt{2}i$

Solve for x and put in answer in i form.

16.
$$x^{2}+5=0$$

 $x^{2}=-5$
 $x=\pm i\sqrt{5}$

$$X^{2}+5=0$$

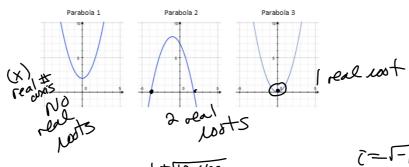
 $X^{2}=-5$
 $X=5\pm i\sqrt{3}$
 $X=5\pm i\sqrt{3}$

17.
$$x^2 + 36 = 0$$

 $x^2 = -36$
 $x = 2 + 6i3$

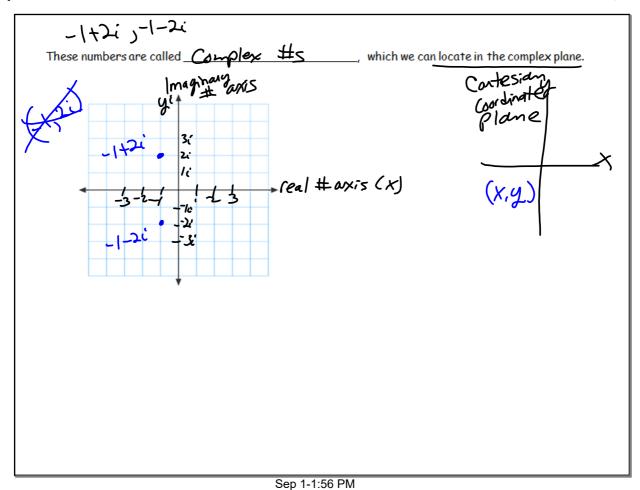
18. Explain why there is no real number that is the square root of a negative number. For example, think about the $\sqrt{-4}$.

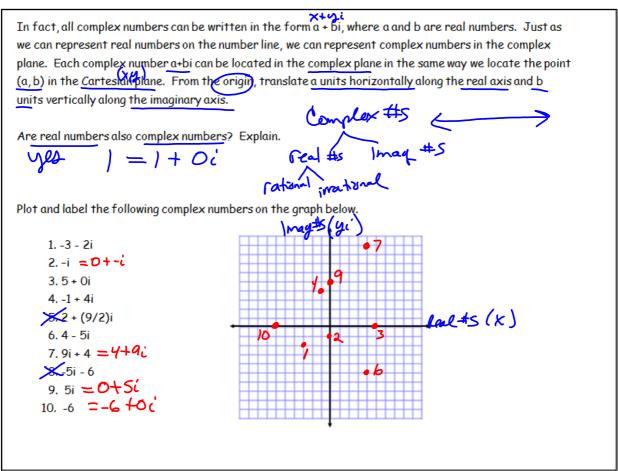
There's no real # that you can multiply by itself and get a negative t. EX. 2(2)=4 2(-2)=4


Aug 12-3:49 PM

Complex numbers

Algebra 2 Unit 4 Day 2


Yesterday we learned about a new number i. Today we are going to take it a step further and learn about complex numbers.

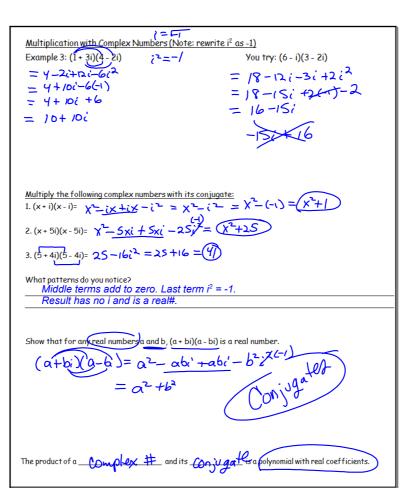

Which of these three parabolas are represented by a quadratic equation y= ax2+bx+c that has no real solution to $ax^2 + bx + c = 0$? Explain.

$$X = \frac{-2 \pm \sqrt{4 - 4(1)(5)}}{2(1)} = \frac{-2 \pm \sqrt{4 - 20}}{2} = \frac{-2 \pm \sqrt$$

Sep 1-1:55 PM

Since complex numbers are built from real numbers, we should be able to add, subtract, multiply and divide them. Note: We are not going to look at division.

Addition with Complex Numbers


You try:
$$(6- i) + (3- 2i)$$

= $9-3i$

Subtraction with Complex Numbers

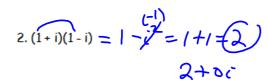
Example 2:
$$(3 + 4i) - (7 - 20i)$$

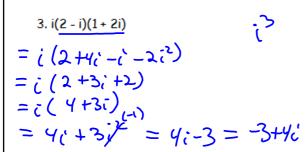
= $3 + 4i - 7 + 20i$
= $-4 + 24i$

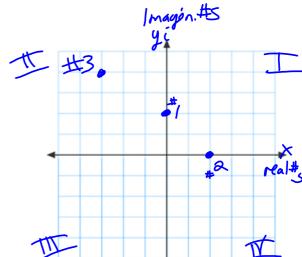
You try:
$$(6 - i) - (3 - 2i)$$

= $6 - 6 - 3 + 26$
= $3 + 6$

Sep 1-1:57 PM




Sep 1-1:57 PM


You do:

Express the quantities below in a + bi form, then graph and label the corresponding points on the complex plane.

 $1.(1+i)-(1-i) = \frac{1+c}{2c} - 1+c'$

Sep 1-1:57 PM