QUIZ 1 Wed Days 1-3, function definition, evaluate f(__)=, state domain & range, identify & justify domain 'trouble'

QUIZ 2 Thurs Days 4 & 5, operations with functions and composition.

HW 6.4 1. D: (-2, 5) R: (0, 2]

13. $\frac{1}{(x+1)}$, $x \neq 3/2$, -1

14. x + 1, $x \neq 3/2$

TEST next Tuesday

2. Variable in Denominator

It passes the vertical line test

D: $\{x | x \neq -3\}$ R: $\{y|y \neq 0\}$

5. $x^2 + 3x - 1$

9. $18n^2 - 3n - 3$

3. 6n - 13

6. $3x^3 - x^2$

 $7. \qquad \frac{3x-1}{x^2}, x \neq 0$

11. $2x^2 + x - 6$

12. $4x^3 - 8x^2 - 3x + 9$

Jan 13-8:30 PM

1. Find the domain and range from Warm-Up sheet question 3.

Range: (0,2]

Explain how you know it's a function. <u>it passes the vertical</u>

line test

2. a. State the type of trouble.

b. Find the domain algebraically.

c. Sketch the graph.

d. Use the graph to find the range.

a. <u>varin denominator</u>

b. $\{X \mid X \neq -3\}$

d. {y|y+0}

Let f(x) = 3x - 1 and $g(x) = x^2$, find each of the following. State any domain restrictions.

3. f(2n-4) = 3(2n-4) - 1f(2n-4) = 6n-13

4. (g-f)(-3) = g(-3) - f(-3)= 9 + 10 = 19

Aside: $9(-3) = (-3)^2$ f(-3) = 3(-3) - 1

5. (f+g)(x) = f(X) + g(X)= 3 X-1 + X2 = X2+3X-1

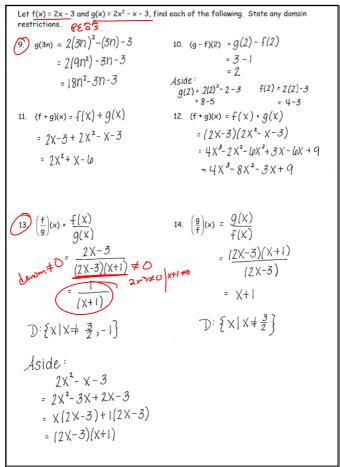
6. $(f \cdot g)(x) = f(x) \cdot g(x)$ = (3 X - 1)(X²) = 3 X3 - X2

7. $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \frac{3x-1}{x^2}$ 8. $\left(\frac{g}{f}\right)(x) = \frac{g(x)}{f(x)} = \frac{x^2}{3x-1}$

D: {x | x = 0}

 $\mathbb{D} \colon \left\{ \times \mid \times \neq 1/3 \right\} \quad \begin{array}{l} 3x - l \neq 0 \\ x \neq \frac{1}{3} \end{array}$

Jan 11-8:49 PM



Jan 11-8:50 PM

Composition of Functions

Jan 13-8:36 PM

<u>Composition of Functions</u> \rightarrow the output from the first function becomes the input for the second function; combines the rules of two functions.

Consider: A gardener has a rectangular garden that is 14 feet by 6 feet that he would like to cover with topsoil at a cost of \$1.50 per square foot of garden space. How much would it cost to cover the garden with topsoil? How would you solve this problem?

$$\chi \longrightarrow f(\chi) \longrightarrow d = f(\chi)$$

Jan 13-8:36 PM

In this example, we needed the area of the garden to be able to calculate the cost of the topseil. This is similar to the way composition works.

Input = x fOutput from fBecomes input for g gFinal Output = yThere are two types of notation for the composition above, they both mean the same thing: evaluate in function f then take that answer and substitute into function g. $(g \circ f)(x) = g(f(x))$ $(g \circ f)(x) = g(f(x))$ The example, we needed the area of the garden to be able to calculate the cost of the topseil. This is similar to the way composition works.

Final Output = yFinal Output = yThere are two types of notation for the composition above, they both mean the same thing: evaluate in function f then take that answer and substitute into function g. $(g \circ f)(x) = g(f(x))$ The example, we needed the area of the topseil in the cost of the co

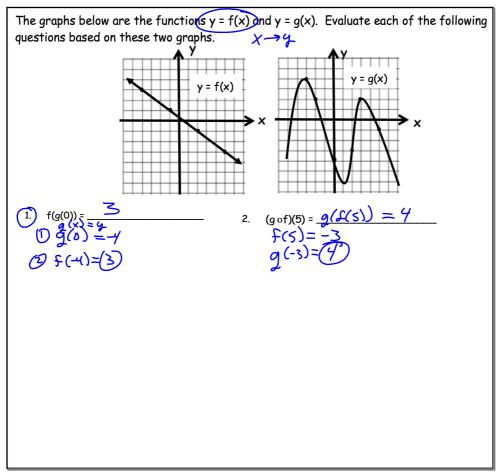
Given: $f(x) = x^2 - 3$, g(x) = 2x + 1, and $h(x) = \sqrt{x - 3}$ find each of the following:

- $f(g(1)) \qquad 2. \qquad g(f(1))$ g(1) = 2(1) + 1 = 3 $f(3) = 3^{2} 3$ = 9 3 = 6 $2. \qquad g(f(1))$ $g(1) = 1^{2} 3 = 1 3 = -2$ g(-2) = 2(-2) + 1 = -4 + 1 = -3
- 3. f(f(-2)) $f(-2) = (-2)^{2} 3$ = 4 3 = 1 $f(1) = 1^{2} 3 = -3$ 4. $(g \circ f)(3) = g(f(3))$ $f(3) = 3^{2} 3 = 6$ g(4) = 2(4) + 1 = (2) + 1 = (3)

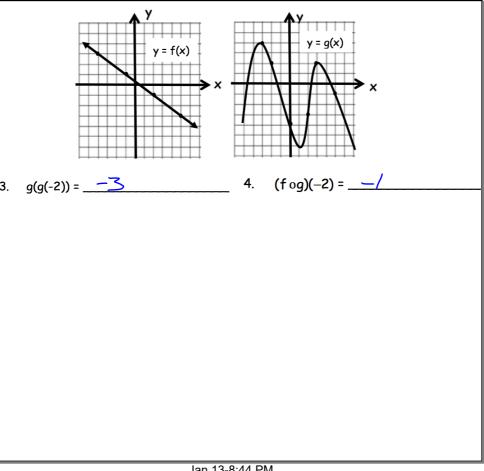
Jan 13-8:40 PM

Given: $f(x) = x^2 - 3/g(x) = 2x + 1/g(x) = \sqrt{x-3}$ find each of the following:

- 5. $(g \circ h)(7) = \emptyset$ 6. f(h(g(4))) $= g(h(7)) \qquad g(4) = 2(4) + 1 \qquad 9$ $h(7) = \sqrt{7-3} = 14 = 2$ $g(2) = 2(2) + 1 = \emptyset$ $h(9) = \sqrt{9-3} = 16$ $h(9) = \sqrt{9-3} = 6-3 = 3$ $h(9) = \sqrt{9-3} = 6-3 = 3$



Jan 13-8:42 PM



Sometimes we want to write a rule of composition with functions; in other words, we want to write the composition as a new function in terms of x.

Given: $f(x) = 2x - 3/g(x) = x^2 - 1$, and $h(x) = \sqrt{x+2}$, find each of the following:

1)
$$f(g(x))$$

 $f(x^2, 1) = 2(x^2 - 1) - 3$
 $= 2x^2 - 2 - 3$
 $= 2x^2 - 5$

1)
$$f(g(x))$$

 $f(x^2-1)=2(x^2-1)-3$
 $=2x^2-2-3$
 $=2x^2-3$
 $=2x^2-1+2$
 $=(x^2+1)$

Jan 13-8:44 PM

Given: f(x) = 2x - 3, $g(x) = x^2 - 1$, and $h(x) = \sqrt{x+2}$, find each of the following:

3)
$$g(f(x))$$

$$= q(2x-3)=(2x-3)^2-1$$

$$= (2x-3)(2x-3)-1$$

$$= 4x^2-(2x-6x+9)-1$$

$$= 4x^2-12x+8$$

3)
$$g(f(x))$$

= $g(f(x))$
= $g(h(x)) = \frac{\chi+1}{2}$
= $g(h(x)) = \frac{\chi+1}{2}$

Scientists modeled the intensity of the sun, I, as a function of the number of hours since 6:00 am, h, using the function $I(h) = \frac{12h - h^2}{36}$. They then model the temperature of the soil, T, as a function of the intensity using the function $I(I) = \sqrt{5000I}$. Which of the following is closest to the temperature of the soil at 2:00 pm?

a. 38

b. 54 $I(R) = \frac{12(R) - R^2}{36} = \frac{4(-L)^2}{36}$ $I(R) = \frac{12(R) - R^2}{36} = \frac{4(-L)^2}{36} = \frac{4(-L)^2}{36}$ $I(R) = \frac{12(R) - R^2}{36} = \frac{4(-L)^2}{36} = \frac{4($

Jan 13-8:46 PM

Dec 2-8:45 PM