Homework 7-4

#1 - 8 a) see next slide for sketches

#1 - 8 b) reference angles:

1. 30°

5. 45°

9. III

10. D

2. π/6

3. π/3

170

6. π/4 7. π/6

4. None

8. π/3

Do warm-up at top of Day 5 notes and find the angle measure in degrees to the nearest tenth.

Yesterday reference angles were introduced, but we did not practice any with radian measures. So for HW 7-4: you should have been able to do 1ab, 2-8 a part only, 9 and 10.

Completed notes were posted as an fyi.

Aug 13-1:42 PM

Warm-Up:

59CATA

P(5, 12) is a point on the terminal side of θ in standard position. Find the exact values of $\sin(\theta)$, $\cos(\theta)$, and $\tan(\theta)$.

Also find the measure of angle θ to the nearest tenth of a degree.

$$SinQ = \frac{O}{H} = \frac{12}{(3)}$$

 $COSO = \frac{A}{H} = \frac{5}{13}$
 $COSO = \frac{A}{A} = \frac{12}{5}$
 $COSO = \frac{A}{A} = \frac{12}{5}$
 $COSO = \frac{12}{5}$
 $COSO = \frac{12}{5}$

Day 5 Goal: **Determine trig values in various** quadrants given a point on a unit circle vs not on a unit circle.

Aug 9-4:49 PM

Aug 9-4:50 PM

4. P(-8, -6) is a point on the terminal side of θ in standard position. Find the exact values of $sin(\theta)$, $cos(\theta)$ and $tan(\theta)$.

Why is this example different? Not on a Unit Gircle $(x,y) \neq (as0, s,h0)$ $\frac{-6}{2(3-4-5)} - \frac{-6}{500} = \frac{-3}{50}$ $6-8-10 - \cos\theta = \frac{-9}{50} = \frac{-9}{50}$ $\frac{1}{5} = c^{2}$ $\frac{1}{5} + \tan\theta = \frac{-6}{8} = \frac{3}{4}$

Aug 9-4:51 PM

P(-4, 5) is a point on the terminal side of θ in standard position. Find the exact values of $sin(\theta)$, $cos(\theta)$ and $tan(\theta)$.

6. P(-2, -3) is a point on the terminal side of θ in standard position. Find the exact values of $sin(\theta)$, $cos(\theta)$ and $tan(\theta)$.

$$(-,+) = II$$
 $5P(-4,5)$ is a point on the terminal side of θ in standard position. Find the exact values of $\sin(\theta)$, $\cos(\theta)$ and $\tan(\theta)$.

is a point on the terminal side of
$$\theta$$
 in standard position. Find the exact if $\sin(\theta)$, $\cos(\theta)$ and $\tan(\theta)$.

$$\begin{array}{c}
S_1 \times Q = \frac{S}{4I} & \frac{S}{4I} = \frac{S}{4I} \\
S_1 \times Q = \frac{S}{4I} & \frac{S}{4I} = \frac{S}{4I}
\end{array}$$

$$\begin{array}{c}
(0.5Q = \frac{S}{4I} & \frac{S}{4I} = \frac{S}{4I} \\
S_1 \times Q = \frac{S}{4I} & \frac{S}{4I} = \frac{S}{4I}
\end{array}$$

$$\begin{array}{c}
(0.5Q = \frac{S}{4I} & \frac{S}{4I} = \frac{S}{4I}
\end{array}$$

$$\begin{array}{c}
(0.5Q = \frac{S}{4I} & \frac{S}{4I} = \frac{S}{4I}
\end{array}$$

$$\begin{array}{c}
(0.5Q = \frac{S}{4I} & \frac{S}{4I} = \frac{S}{4I}
\end{array}$$

$$\begin{array}{c}
(0.5Q = \frac{S}{4I} & \frac{S}{4I} = \frac{S}{4I}
\end{array}$$

P(-2, -3) is a point on the terminal side of
$$\theta$$
 in standard position. Find the exact values of $\sin(\theta)$, $\cos(\theta)$ and $\tan(\theta)$.

Sind
$$\begin{array}{c}
-3 & 13 \\
\hline
-3 & 13
\end{array}$$

$$\begin{array}{c}
-3 & 13 \\
\hline
-3 & 13
\end{array}$$

$$\begin{array}{c}
-3 & 13 \\
\hline
-3 & 13
\end{array}$$

$$\begin{array}{c}
-3 & 13 \\
\hline
-3 & 13
\end{array}$$

$$\begin{array}{c}
-3 & 13 \\
\hline
-3 & 13
\end{array}$$

$$\begin{array}{c}
-3 & 13 \\
\hline
-3 & 13
\end{array}$$

$$\begin{array}{c}
-3 & 3 \\
\hline
-3 & 3
\end{array}$$

$$\begin{array}{c}
-3 & 3 \\
\hline
-3 & 3
\end{array}$$

$$\begin{array}{c}
-3 & 3 \\
\hline
-3 & 3
\end{array}$$

$$\begin{array}{c}
-3 & 3 \\
\hline
-3 & 3
\end{array}$$

$$(-2)^{2} + (-3)^{2} = C^{2}$$

$$4 + 9 = C^{2}$$

$$13 = C^{2}$$

$$C = \sqrt{13}$$

Aug 9-4:51 PM

Application Word Problems:

1. A bicycle wheel with a radius of 13" has a valve cap positioned at the highest point of the wheel. If the wheel is spun 750° in one direction, how high is the valve cap above the ground? Round your answer to the nearest tenth of an inch.

