Chapter 8

What's My Curve?

ALWAYS LEARNING

Copyright © 2016, 2012 Pearson Education, Inc.

PEARSON

Straight to the Point

 We cannot use a linear model unless the relationship between the two variables is linear.

ALWAYS LEARNING

Copyright © 2016, 2012 Pearson Education, Inc.

PEARSON

Straight to the Point (cont.)

The relationship between Dive Heart Rate (in beats per minute) and Duration (in minutes) looks fairly linear at first:

ALWAYS LEARNING

Copyright © 2016, 2012 Pearson Education, Inc.

PEARSON

Straight to the Point (cont.)

A look at the residuals plot shows a problem:

ALWAYS LEARNING

Copyright © 2016, 2012 Pearson Education, Inc.

PEARSON

Getting the "Bends"

- If there's a clear bend in the residuals, your model has missed something important about the relationship, and it's time to look for a better model.
- We will explore two different kinds of curves, although this topic is complex and there are many, many options.
- But hopefully our residual plots will show... nothing. Which indicates our model is strong.

ALWAYS LEARNING

Copyright © 2016, 2012 Pearson Education, Inc.

PEARSON

Exponential Models

- Populations tend to grow exponentially.
- So does money when inflation increases costs by a given percentage year after year.
- Other things shrink exponentially. For example, the way your body metabolizes a certain percentage of a drug may decay exponentially.
- Radioactive decay is another example of an exponential model.

ALWAYS LEARNING

Copyright © 2016, 2012 Pearson Education, Inc.

PEARSON

Exponential Models (cont.)

 Equations of exponential models involve (surprise!) exponents, and look like this:

$$\hat{y} = a(b^x)$$

ALWAYS LEARNING

Copyright © 2016, 2012 Pearson Education, Inc.

PEARSON

Exponential Models (cont.)

- We see that a represents the model's starting value.
- The value b represents the growth rate (or decay rate).
- If *b* = 1.02, that's 102%. A 2% growth rate.
- If the model is decreasing 15% for every 1 unit of change in x, then the model's value of b would be 100% - 15% = 0.85.

ALWAYS LEARNING

Copyright © 2016, 2012 Pearson Education, Inc.

PEARSON

$$y = 4(1.23)^{X}$$

starting value: 4

increasing/decreasing

1.23=1238

$$y = 7(0.85)^{X}$$

starting value: 7

increasing decreasing

$$y = .75(1.15)^{X}$$

starting value: ...75

increasing/decreasing

$$y = .25(0.7)^{X}$$

starting value: .. 25

increasing/decreasing

$$y = 4000(3.2)^X$$

starting value: 4000

increasing/decreasing

$$y = 7(4)^{X}$$

starting value: _________

increasing/decreasing

$$y = 300(.5)^{X}$$

starting value: 300

increasing/decreasing

$$y = 7,800(\frac{1}{4})^{X}$$

starting value: 7800

increasing decreasing

Linear models:

as x increases, we add/subtract a set amount

Ex: y = 6 + 3x (as x increase by 1, y increases by 3)

Exponential Models:

as x increases, we multiply/divide by a set amount

Ex: $y = 6(3)^x$ (as x increase by 1, y increases by 3 times)

A Model for Penguin Dives

- The researchers studying emperor penguins set out to understand how the duration of a dive is related to the penguin's heart rate.
- Here are the scatterplot showing the curve and the resulting residuals plot:

Copyright © 2016, 2012 Pearson Education, Inc.

A Model for Penguin Dives (cont.)

- That's clearly an improvement.
- The residuals now look random.
- The equation for our exponential model is:

$$DiveHeartRate = 102.32(0.91)^{Duration}$$

ALWAYS LEARNING

Copyright © 2016, 2012 Pearson Education, Inc.

PEARSON

A Model for Penguin Dives (cont.)

- The value of a tells us our model estimates that penguins' heart rates should average around 102.32 beats per minute when they're not diving.
- The value of *b* indicates that heart rates tend to decrease exponentially about 1.00 0.91 = 9% for each minute a dive lasts.

ALWAYS LEARNING

Copyright © 2016, 2012 Pearson Education, Inc.

PEARSON

Homework:

Worksheet: Linear and Exponential Patterns

