Day 6: Inverse Norm

(Going from Percents to Z-scores)

Finding Normal Percentiles by Hand

- When a data value doesn't fall exactly 1, 2, or 3 standard deviations from the mean, we can look it up in a table of Normal percentiles.
- Table Z in Appendix F provides us with normal percentiles, but many calculators and statistics computer packages provide these as well.

ALWAYS LEARNING

Copyright © 2016, 2012 Pearson Education, Inc.

PEARSON Chapter 5, Slide 22

Finding Normal Percentiles by Hand (cont.)

- Table Z is the *standard Normal* table. We have to convert our data to z-scores before using the table.
- The figure shows us how to find the area to the left when we have a z-score of 1.80:

ALWAYS LEARNING

Copyright © 2016, 2012 Pearson Education, Inc.

PEARSON

From Percentiles to Scores: z in Reverse

- Sometimes we start with areas and need to find the corresponding z-score or even the original data value.
- Example: What z-score represents the first quartile in a Normal model?

ALWAYS LEARNING

Copyright © 2016, 2012 Pearson Education, Inc.

PEARSON

From Percentiles to Scores: z in Reverse (cont.)

- Look in Table Z for an area of 8.2500.
- The exact area is not there, but 0.2514 is pretty close.

• This figure is associated with z = -0.67, so the first quartile is 0.67 standard deviations below the mean.

ALWAYS LEARNING

Copyright © 2016, 2012 Pearson Education, Inc.

PEARSON

Finding Normal Percentiles Using Technology

- Many calculators and statistics programs have the ability to find normal percentiles for us.
- Enter the lower bound and upper bound as z-scores into your calculator's normalcdf (cumulative distribution function) and your calculator will compute the percentage between the z-scores.
- Enter a percentile into your calculator's inverse-normal command and it will provide you with the corresponding z-score.

ALWAYS LEARNING

Copyright © 2016, 2012 Pearson Education, Inc.

PEARSON

What if you're given the percent below or above a specific value and you need to find the value, mean or standard deviation?

Answer: You work backwards!

You will be using the invNorm function:

2nd-->vars-->3:invNorm(percent as a decimal BELOW a specific value)

Pg.39

hvNorm tells you the z-score that corresponds to a percent BELOW a value

o If they tell you a percent ABOVE a value, you have to subtract it from 1 before entering into invNorm on calculator

Example 1: Scores on SAT Verbal are Normally Distributed with a mean of 505 and a standard deviation of 110. How high must a student score to be in the top 10%?

Example 2: Given a normal distribution of $\sigma = 10$, what is the mean if 21% of values are below 50?

Type Z = invnorm(.21) = .806 Z = Value - mea 5.D 218ik - 806 = 50 - X

$$2 = Value - mean 5.D$$

$$-.806 = 50 - X$$

$$-.806 = 50 - X$$

$$-.806 = 50 - X$$

$$-.58.06 = -.X$$

$$-.58.06 = -.X$$

Example 3: Based on a Normal distribution model of Angus steer weights with a mean of 1152 lbs and a standard deviation of 84 lbs...

a. what is the cutoff value for the lowest 20% of the weights?

207ale

$$Z = 10000000 (.20) = -.892$$

$$Z = \frac{\text{Value} - 50}{\text{SD}}$$

b. what weight represents the 99^{th} percentile?

Z='INVNORM (.99) = 2.32

Example 4: Based on a Normal distribution model of IQs with mean 100 and standard deviation of 16...

a. what cutoff value will be the highest 5% of all IQs?

b. what IQ represents the 15^{th} percentile?

Homework - Worksheet 5-6