

Oct 28-7:56 PM

Oct 29-7:33 PM

Warm-Up:

A function f has zeros at $-1,3$, and 5 . We know that $f(-2)$ and $f(2)$ are negative, while $f(4)$ and $f(6)$ are positive.

Oct 28-8:08 PM

You have been given a set of problems.

The directions for some say, "factor" whereas others say,
"solve".
What's the difference between the two? How would you expect your answers to look?

factor \rightarrow simplify
 solve \longrightarrow find the value(s) of the variable

Factor completely each of the following:

$$
\begin{aligned}
& \text { 1. } x^{8}-1 \text { aCTS } \quad \text { 2. } x^{4}-2 x^{2}+1 \text { Prodnet } \frac{1}{2} \\
& :\left(x^{4}+1\right)\left(x^{4}-1\right) \quad=\left(x^{2}-1\right)\left(x^{2}-1\right) \\
& \lim _{-1}, \frac{-1}{2} \\
& =\left(x^{4}+1\right)\left(x^{2}+1\right)\left(x^{2}-1\right)=(x-1)(x+1)(x-1)(x+1) \\
& :\left(x^{4}+1\right)\left(x^{2}+1\right)(x-1)(x+1) \\
& =(x-1)^{2}(x+1)^{2}
\end{aligned}
$$

```
5. \(x^{5 n}+x^{2 n}\)
\[
=x^{2 n}\left(x^{n}+1\right)\left(x^{2 n}-x^{n}+1\right)
\]
6. \(2(x+2)^{2}+(x+2)-3 \quad\) Let \(u=x+2\) \(: 2 u^{2}+u-3 \quad\) Prod \(\frac{-6}{1}-2,3\)
\(2 u^{2}-2 u+3 u-3\)
\(\therefore 2 u(u-1)+3(u-1)\)
\(:(u-1)(2 u+3)\)
\(=(x+2-1)(2(x+2)+3)\)
\(:(x+1)(2 x+4+3)\)
\(:(x+1)(2 x+7)\)
```

Oct 28-8:24 PM

3. $64 x^{6}-1$ DOTS
$:\left(8 x^{3}+1\right)\left(8 x^{3}-1\right) \quad \sqrt[3]{8 x^{3}} \sqrt[3]{1}$
$:(2 x+1)\left(4 x^{2}-2 x+1\right)(2 x+1)^{3}\binom{2 x=1}{\left(4 x^{2}+2 x+1\right.}$
4. $2 x^{5}+x^{4}+2 x^{3}+x^{2}$
$x^{2}\left(2 x^{3}+x^{2}+2 x+1\right)$
$x^{2}\left[x^{2}(2 x+1)+1(2 x+1)\right]$
$=x^{2}(2 x+1)\left(x^{2}+1\right)$
7. $25 x^{2 n}-625$
$=25\left(x^{2 n}-25\right)$
$.25\left(x^{n}-5\right)\left(x^{n}+5\right)$

All of the previous problems were factorable.
If we set each of them equal to 0 , only some are solvable. Why?
(1) We have more then I unknown.

Oct 28-8:25 PM
3. $x^{4}-13 x^{2}+36=0$
4. $3 x^{4}-24 x=0$

$$
\left.\left.\begin{array}{l}
3 x\left(x^{3}-8\right): 0 \\
3 x(x-2)\left(x^{2}+2 x+4\right): 0 \\
\hline 3 x: 0 \\
\hline x-2: 0 \\
x \cdot 0 \\
x \cdot 2
\end{array} \right\rvert\, \begin{array}{l}
x^{2}+2 x+4: 0 \\
\sqrt{(x+1)^{2}+2 x+\frac{1}{-3}}=-4+1
\end{array}\right\} \begin{aligned}
& x+1= \pm i \sqrt{3} \\
& \{0,2,-1 \pm i \sqrt{3}\} \begin{array}{l}
x=-1 \pm i \sqrt{3}
\end{array}
\end{aligned}
$$

