HW 5 - 6

1.
$$4(x-1)^2(x+1)^2$$
2. $5x^2(x-5)(x^2+5x+25)$
3. $(x-2y)(x+2y)(x^2+4y^2)$
4. $(x+y+z)(x+y-z)$
5. $\{\pm 2i\sqrt{2}, \pm 2\sqrt{2}\}$
6. $\{-2, \pm 4\}$
7. $\{0, \pm 1, 2\}$
8. $\{\pm i\sqrt{2}, \pm 1\}$

In 1 - 4, Factor Completely.

1.
$$4x^4 - 8x^2 + 4$$
 $4(x^4 - 2x^2 + 1)$
 $5x^2(x^3 - 125)$
 $4(x^2 - 1)(x^2 - 1)$
 $5x^2(x - 5)(x^2 + 5x + 25)$
 $4(x - 1)(x + 1)(x - 1)(x + 1)$
 $4(x - 1)^2(x + 1)^2$
3. $x^4 - 16y^4$
 $(x^2 - 4y^2)(x^2 + 4y^2)$
 $4. (x + y)^2 - z^2$
 $(x + y + z)(x + y - z)$
 $= (x - 2y)(x + 2y)(x^2 + 4y^2)$

Oct 29-7:58 PM

Oct 29-7:58 PM

Oct 29-7:55 PM

Oct 29-7:59 PM

Explain how you would sketch $P(x) = x^2(x - 1)^3(x + 1)$ without a graphing calculator.

Sketch a graph that has 2 real zeros and 2 imaginary zeros.

What do you think it means if a function is increasing? Decreasing?

Interval Notation A notation for representing an interval as a pair of numbers. The numbers are the endpoints of the interval. Parentheses and/or brackets are used to show whether the endpoints are excluded or included. For example, [2, 7) is the interval of real numbers between 2 and 7, including 2 and excluding 7.

Graphically →

Increasing \rightarrow a function f is <u>increasing</u> on an interval if, for any 2 points in the interval, a positive change in x results in a positive change for f(x).

Decreasing \rightarrow a function f is <u>decreasing</u> on an interval if, for any 2 points in the interval, a positive change in x results in a negative change for f(x).

* When determining increasing/decreasing we are concerned with the X - VALUES!!!

And all intervals are written in (,) form

Oct 29-8:01 PM Oct 29-8:11 PM

Oct 29-8:17 PM

Oct 29-8:17 PM

For each of the following, determine the intervals on which the graph is increasing and decreasing.

Find all relative minima and maxima.

* When determining increasing/decreasing we are concerned with the X - VALUES!!!

1.

Increasing:

Decreasing:

Rel Min:

Rel Max:

Describe the behavior of the above functions as x approaches positive and negative infinity

X

X

X

X

- \implies

Describe the behavior of the above functions as x approaches positive and negative infinity

x → ∞

x → -∞

Oct 29-8:17 PM

Oct 29-8:28 PM

HW Answers 5-7	1. HW tonight 5-8
1. $(x^n - 4)(x^n - 1)$	2. Quiz tomorrow on Day
2. $3x(x-1)(x^2+x+1)$	3 and 4 and 7 and 8.
	No calculator!
3. x(2x - 5)	3. HW tomorrow is 5-9
	can start early if you
4. {0, 1, -1, 4}	want.
5. (**\5\)	4. Castle Learning Unit 5
	will be shared with you
6. {0, 7/5, -7/5}	if you want to start over
	break

1. x ²ⁿ - 5x ⁿ + 4	2.	3x*-3x
3. 2(x - 1) ² - (x - 1) - 3	4.	$2x^4 + 8x^3 = 2x^2 + 8x$
5. x ⁴ + 3x ² - 18 = 0	6.	25x³ = 49x

Oct 29-11:53 AM Oct 29-1:07 PM

$$4x^{4}-13x^{2}+3:0 \qquad f: 12$$

$$4x^{4}-12x^{2}-1x^{2}+3:0 \qquad S: -13$$

$$4x^{2}(x^{2}-3)-1(x^{2}-3):0 \qquad -12: -1$$

$$(x^{2}-3)(4x^{2}-1):0$$

$$(x^{2}-3)(2x-1)(2x+1):0$$

$$x^{2}-3:0 \qquad [2x-1:0](2x+1:0)$$

$$x^{2}\cdot [3] \qquad x: \frac{1}{2}$$

$$x: \frac{1}{2}\sqrt{3}$$

Nov 19-8:53 AM Nov 19-8:56 AM

Using your graphing calculator, sketch each of the following. Determine intervals where increasing, decreasing and any relative minima or maxima.

1. $y = 3x^2 - 2x + 1$ And tysice minima increasing: (.33, ...)Decreasing: $(-\infty, .33)$ Rel Min: (.33, ...)Rel Max: $-\infty$ Rel Max: $-\infty$

Oct 29-8:29 PM Oct 29-8:30 PM