```
HW 5-8
1. increasing: (-\infty,1)
    decreasing: (1, \infty)
    rel min: none
    rel max: (1,3)
2. increasing: (-3,1)
    decreasing: (-\infty, -3), (1, \infty)
    rel min: (-3,-4)
    rel max: (1,4)
```

3. look left to right where you would "climb the hill", graph goes higher
4. a point on the graph higher that those on either side of it
5. determine if the leading coefficient of the polynomial is + or - and decide if the degree is odd or even
6. Graph see next page
increasing: $(-1.44,0),(.69, \infty)$
decreasing: $(-\infty,-1.44),(0,69)$
rel min: (-1.44, -2.83), (.69, -.40)
rel max: $(0,0)$
7. Graph see next page
increasing: $(-1.79,1.12)$
decreasing: $(-\infty,-1.79),(1.12, \infty)$
rel min: $(-1.79,-8.21)$
rel max: $(1.12,4.06)$

Oct 29-8:36 PM

Oct 29-8:41 PM

Nov 1-8:32 PM

Warm-Up: Each of you will be assigned one of these three problems.
Remember: $F(x) \div G(x)=Q(x)$ with a remainder of $R(x)$
work space below - use for your problem...

$$
\text { Dividend } \rightarrow \underset{\text { Divisor }}{F(x)=\underset{\text { Quotient }}{G(x)} \cdot \underset{\text { Remainder }}{Q(x)}+\underset{\sim}{R(x)}}
$$

Consider the polynomial function $f(x)=3 x^{2}+8 x-4$
a. Using long division, divide $f(x)$ by $x-2$
b. Find $f(2)$
$Q(x)=$
$R(x)=$
So $f(x)=$

Consider the polynomial function $g(x)=x^{3}-3 x^{2}+6 x+8$
a. Using long division, divide $g(x)$ by $x+1$
b. Find $g(-1)$
$Q(x)=$
$R(x)=$
So $g(x)=$
3. Consider the polynomial function $h(x)=x^{3}+0 x^{2}+2 x-3$
a. Using long division, divide $h(x)$ by $x-3$
b. Find $h(3)$
$Q(x)=$
$R(x)=$

So $h(x)=$

Oct 29-8:46 PM

Write in the answers for all parts, gathered from the class discussion. What pattern do you see?

What can we say about the connection between
dividing a polynomial, P, by $x-a$ and the value of $P(a)$?

Write in the answers for all parts, gathered from the class discussion. What pattern do you see? (Answers will be posted - get them from your teachers website)

The remainder is the same as the
function value of the possible zero.
Look at \#1: Possible zero: 2

$$
R(2)=f(2)
$$

What can we say about the connection between dividing a polynomial, P, by $x-a$ and the value of $P(a)$?

$$
\text { Remainder }=P(a)
$$

$$
R(x)=P(a)
$$

Oct 29-8:47 PM

In algebra, the remainder theorem is an application of polynomial long division.

The remainder of a polynomial $p(x)$ divided by a linear divisor $(x-c)$ is equal to $p(c)$.

What does that mean?
If you divide a polynomial $P(x)$ by a possible factor $(x-c)$, you will get a remainder that is equal to the function value of the corresponding possible zero

In algebra, the remainder theorem is an application of polynomial long division.

The remainder of a polynomial $p(x)$ divided by a linear divisor $(x-c)$ is equal to $p(c)$.

What does that mean?

```
Formally: P(x)=q(x)(x-a)+P(a)
```

Why Is This Useful?
Knowing that $x-c$ is a factor is the same as knowing that c is a root (and vice versa).
The factor " $x-c$ " and the root " c " are the same thing!
Now try these: Use the remainder theorem to determine the remainder.

1. $\left(-x^{3}+6 x-7\right) \div(x-2)$
2. $\left(x^{3}+x^{2}-5 x-6\right) \div(x+2)$
$x=2$
$f(2):-(2)^{3}+6(2)-7$
$f(-2)=(-2)^{3}+(-2)^{2}-5(-2)-6$
$\therefore 8+12-7$
$=-8+4+0-6$
$=0$
$: 4.7:-3$

Oct 29-8:50 PM

What do you think it means if the remainder is 0 ?
The divisor is a factor of the polynomial; the corresponding x-value is a zero of the polynomial.
crosses the x -axis at that pt

Another use for the remainder theorem: you can determine very quickly if a given binomial is a factor of a polynomial without doing long division or factoring.

Using the remainder theorem, determine if the given binomial is a factor of the given polynomial.

1. $\left(x^{3}-x^{2}-x-2\right) \div(x-2)$
$x=2$
2. $\left(x^{4}-8 x^{3}-x^{2}+62 x-34\right) \div(x-7)$
$x=7$

Oct 29-8:54 PM

