

Jan 3-2:06 PM

```
Which relation is a function? Explain why the other is not.
1. A. {(2,3), (8 3), (4, 8)} yes
    B. {(-1, 4), (-2, 6), (3,5), (3, 0)} \capO
    repeated x-values
```


Jan 3-2:09 PM
5. Given the set of points: $\{(1,2),(3,4),(5,6)\}$ state another point so that the relation is no longer a function. any pt with an x-value of 1,3, ors

Relation - A set of ordered pairs.
Function - A relation in which each x-value (input) corresponds to exactly one y-value (output)
Means: No repeated x values.
All functions are relations but not all relations are functions.
Function - The input value x is your student ID number and the output value y is the number of pets you have.

Relation - The input value x is the letter grade on the last unit test and the output value y is the ID number of each student enrolled in the course.

Graphically - Vertical line test - A relation is a function if a vertical line does not intersect the graph in more than one point.

Jan 3-2:07 PM
3. A. $(x-2)^{2}=4(y+3)$
B. $(y+3)^{2}=-4(x-2)$

4. A .

B.

Jan 3-2:19 PM

Function Notation - $f(x)$-read " f of x ", where x is the input value (domain) and $f(x)$ is the output value (range)
ie: $f(2)=4$ would correspond to the point $(2,4)$.
When $x=2, y=4$.

Evaluate each of the following:

1. $h(t)=|t+2|+3$, find $h(-3)$
$h(-3)=|-3+2|+3=|-1|+3: 1+3=4$
2. $g(a)=3^{3 a-2}$, find $g(1)$
$g(1): 3^{3(1)-2}$
$: 3^{1}: 3$
3. $f(x)=-2 x^{2}+4$, find $f(4)$
$f(4):-2(4)^{2}+4:-2(16)+4:-28$

Jan 3-2:26 PM
7. Given the graph, $f(x)$, at right, find each of the following:
a. $f(-1)=-1$
b. $f(0)=$ \qquad
c. $f(2)=$ \qquad
d. $f(4)=$ \qquad
e. $f(6)=$ \qquad
f. $f(7)=$ \qquad 3

4. $g(x)=4 x-2$, find $g(2 a)$

$$
\begin{aligned}
g(2 a) & : 4(2 a)-2 \\
& : 8 a-2
\end{aligned}
$$

5. $f(x)=x^{2}-2 x$, find $f\left(n^{2}\right)$

$$
\begin{aligned}
& =\left(n^{2}\right)^{2}-2\left(n^{2}\right) \\
& =n^{4}-2 n^{2}
\end{aligned}
$$

6. $h(x)=\sqrt{2 x-3}$, find $h(n+4)$
$h(n+4): \sqrt{2(n+4)-3}$
$=\sqrt{2 n+8-3}$
$=\sqrt{2 n+5}$

Jan 3-2:28 PM
\square

Nov 29-7:23 AM

