Average Rate of Change

HW 9-1

- 1) a.-5 2) a.2

3) g(x)

- b. 2
- 6.6

See work

C. - 1

- d. Sec explanation d. Sec explanation
- 4) a. 22 5) See explanation

b. 115+514

Jan 23-5:57 PM

Name

Date: _

AVERAGE RATE OF CHANGE COMMON CORE ALGEBRA II HOMEWORK

FLUENCY

1. For the function g(x) given in the table below, calculate the average rate of change for each of the following intervals.

x	-3	-1	4	6	9
g(x)	8	-2	13	12	5

 $=\frac{-2-8}{-1-(-3)}:\frac{-10}{2} = \frac{12--2}{6--1}:\frac{14}{7} = \frac{5-8}{9--3}:\frac{-3}{12}$

= -5 = 2 (d) Explain how you can tell from the answers in (a) through (c) that this is **not** a table that repres

If this was a linear function than the average rate of Change would have been the same for each of these intervals

2. Consider the simple quadratic function $f(x) = x^2$. Calculate the average rate of change of this function over the following intervals:

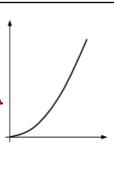
(a) $0 \le x \le 2$

 $\frac{f(2)-f(0)}{2-0} \qquad \frac{f(4)-f(2)}{4-2} \qquad \frac{f(6)-f(4)}{6-4}$

 $\frac{4-0}{2}=2$ $\frac{16-4}{2}=6$ $\frac{36-16}{2}=10$

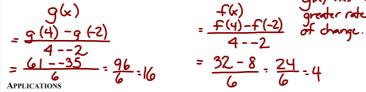
(d) Clearly the average rate of change is getting larger at x gets larger. How is this reflected in the graph of f shown sketched to the right?

As x gets larger the y-values The graph is getting steeper as we move from left to right.

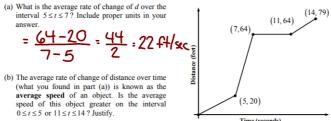


Jan 23-2:25 PM

Which has a greater average rate of change over the interval $-2 \le x \le 4$, the function g(x) = 16x - 3 or the function $f(x) = 2x^2$? Provide justification for your answer.



- 4. An object travels such that its distance, d, away from its starting point is shown as a function of time, t, in seconds, in the graph below.
 - (a) What is the average rate of change of d over the interval $5 \le t \le 7$? Include proper units in your



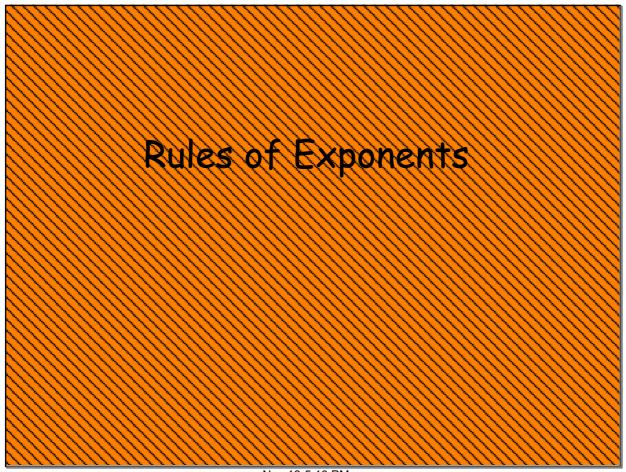
1154514 05+55

The average spred is slightly greater on the interval 115 F514

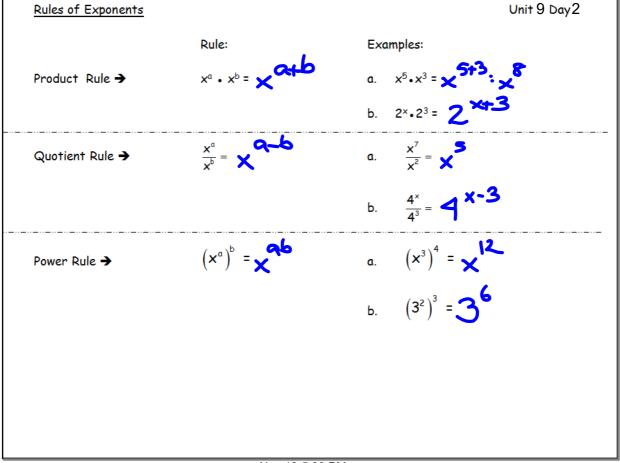
REASONING

5. What makes the average rate of change of a linear function different from that of any other function? What is the special name that we give to the average rate of change of a linear function?

The average rate of change is a constant for linear functions and is not dependent on the interval over which it is calculated. We call this average rate of change the slope.



Nov 18-5:10 PM



Power of a Product →

$$(xy)^{\alpha} = x^{\alpha}$$

a.
$$(ab)^6 = a^6b^6$$

$$\left(\frac{x}{y}\right)^{\alpha} = \frac{x^{\alpha}}{y^{\alpha}}$$

Power of a Quotient
$$\Rightarrow$$
 $\left(\frac{x}{y}\right)^{\alpha} = \frac{x}{y}$ a. $\left(\frac{x}{y}\right)^{7} = \frac{x}{y}$

b.
$$\left(\frac{x^3}{4}\right)^2 = \frac{x^4}{4^2} - \frac{x^6}{16}$$

Zero Exponent \Rightarrow $x^0 =$

Nov 18-5:02 PM

Simplify each expression:

1.
$$3a^2b^3c^4 \cdot 5ab^2c^6 : 15a^3b^5c^{10}$$
 2. $\frac{35x^4y^7z^{10}}{7xy^5z^{10}} = 5x^4b^3c^4 \cdot 5ab^2c^6$

2.
$$\frac{35x^4y^7z^{10}}{7xy^5z^{10}} = 5x^3y^5$$

PEMDAS

- 4. $-2(-2x^3y)^2$
- 6. ya+1. ya-1 : ya+1+a-1

- 7. $\frac{5x^{3}y^{7}}{4x^{2}y^{2}}$ 3. $\frac{5xy^{5}}{4}$
- 9. $\left(\frac{-12a^{8}b^{5}}{6a^{2}b^{4}}\right)^{2}$: $\left(-2a^{4}b\right)^{2}$: $\left(4a^{12}b^{2}\right)^{2}$
- 8. $\left(\frac{5x^{2}}{2y}\right)^{3}$: $\frac{5^{3}x^{6}}{2^{3}y^{3}}$: $\frac{125x^{6}}{2^{3}x^{6}}$
 - 10. $-\frac{4^{\circ}}{5} : -\frac{1}{5}$

Nov 18-5:03 PM

Do the following without a calculator. Use the rules of exponents to help you evaluate the expression.

Express 8^3 as a power of 2. \longrightarrow base has to be 2

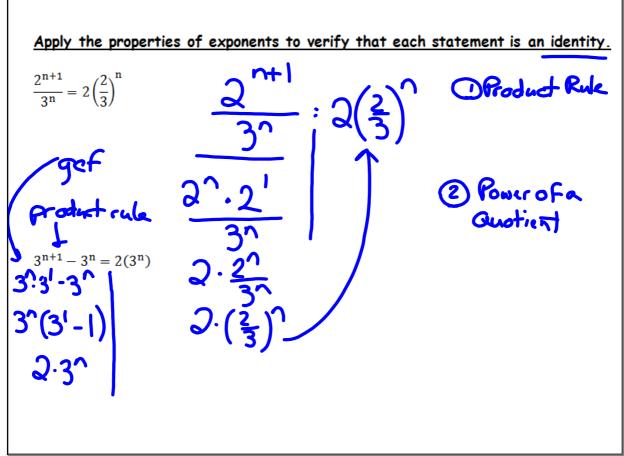
$$8:2^{3}(2^{3})^{3}:2^{9}$$

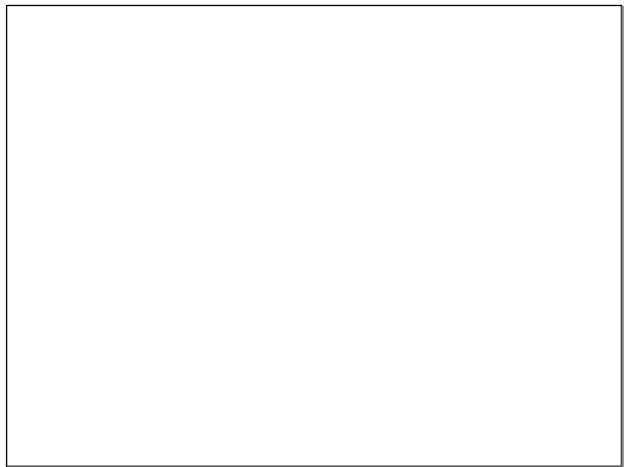
Divide 415 by 210.
$$\frac{4^{15}}{2^{10}} = \frac{(2^2)^{15}}{2^{10}} = \frac{2^{30}}{2^{10}} = 2^{20}$$

Using the power rule evaluate 16 times 9.

Using the power rule multiply 25 times 9.

Nov 18-5:04 PM





Nov 18-5:06 PM