Exponential Growth and Decay

Jan 30-6:20 PM

HW 9-6

1. {-1}

6. {10}

2. { }

- 7. {-15}
- 3. {101/4}
- 4. {11}
- 5. {-3}

Jan 30-6:13 PM

3.
$$12=52-4\sqrt{4x-1}$$
 $\times = 101$ $\times =$

5.
$$\sqrt{2x+15} = x+6$$

$$(\sqrt{2x+15})^{2} \cdot (x+6)^{2}$$

$$2x+15 = (x+6)(x+6)$$

$$2x+15 = (x+6)(x+6)$$

$$2x+15 = x+6$$

$$2x+15 = x+6$$

$$-2x+15 = (x+6)(x+6)$$

$$x=-7$$

$$x=-3$$

$$-2x+15 = x+6$$

$$x=-7$$

$$x=-3$$

$$x=-3$$

$$x=-1$$

$$x=-3$$

$$x=-1$$

$$x=-1$$

$$x=-1$$

$$x=-3$$

$$x=-1$$

$$x=-1$$

$$x=-3$$

$$x=-1$$

$$x=-1$$

$$x=-3$$

$$x=-1$$

Jan 30-6:16 PM

7. Solve algebraically for all values of x:
$$\sqrt{6-2x} + x = 2(x+15)-9$$
 $\sqrt{6-2x} + x = 2(x+15)-9$ $\sqrt{6-2x} + x = 2x+30-9$ $(x+15)(x+29) = 0$ $(x+15)(x+29) = 0$ $(x+15)(x+29) = 0$ $(x+15)(x+21) = 0$ $(x+15)(x+21) = 0$ $(x+15)(x+21) = 0$ $(x+15)(x+29) = 0$ $(x+15$

Jan 30-6:17 PM

<u>Summary</u> :
Point on every exponential graph: (())
Domain: (-w)
Range: (C) 🖒
Quadrants: I, II
Asymptote(s)?
Are exponential functions 1-1? How can you tell? What does this tell you about their
inverses? Yes they are They pass the vertical and horicontal line tosts.
Inverse is also a function!

1. Now let's look at the function $f(x) = 7(3)^x$

Determine the y-intercept of this function algebraically.

- X=○. (0,7
- +(0):7(3):7.1:7

Does the exponential function increase or decrease? Why?

Increase base > 1

Create a rough sketch of this function, labeling its y-intercept.

How does this function's graph compare to that of $f(x) = 3^x$?

The graph will have a y-int (0,7)

The graph will be steeper.

7 is a vertical stretch

Jan 30-6:17 PM

2. Now you look at the function $f(x) = (\frac{1}{3})^x + 4$.

Does the exponential function increase of decrease? Why?

O < base < |

Create a rough sketch of this function, labeling its y-intercept.

Determine the graph's y-intercept algebraically.

$$f(0):(\frac{1}{5})^{\circ}+4:5 (0,5)$$

How does this function's graph compare to that $f(x) = (\frac{1}{3})^x$?

Vertical Shift up 4

Can you recall the rules for transformations that we discussed earlier in the course? Let's look at two more exponential functions and see what transformations occurred.

1. $g(x) = 2^{x-2} - 1$ $g(x) : 2^{x}$ 2. $h(x) = \frac{1}{3}(4)^{x+3}$ $h(x) = -4^{x}$ 1. $g(x) = 2^{x-2} - 1$ $g(x) : 2^{x}$ 2. $h(x) = \frac{1}{3}(4)^{x+3}$ $h(x) = -4^{x}$ 1. $g(x) = 2^{x-2} - 1$ $g(x) : 2^{x}$ 2. $h(x) = \frac{1}{3}(4)^{x+3}$ $h(x) = -4^{x}$ 1. $g(x) = 2^{x-2} - 1$ $g(x) : 2^{x}$ 2. $g(x) = 2^{x}$

@ Vertical Compression of 13

One of the skills you acquired in Algebra 1 CC was the ability to write equations of exponential functions if you had information about the starting value and the base(growth constant). Determine the function of the form $f(x) = a \cdot b^x$ with the information in the table below. Before we start, what do a and b represent in this function.

You can use your calculator to generate the equation for the data. You will need to enter your data into a list by using $STAT \rightarrow EDIT$ and then use the $STAT \rightarrow CALC \rightarrow ExpReg$ to generate the actual equation.

×	0	1	2	3
f(x)	5	15	45	135

f(x)=____

Jan 30-6:18 PM

A runner is using a nine-week training program app to prepare for a "fun run." The table below represents the amount of the program completed, A, and the distance covered in a session, D, in miles.

Α	4/9	5/9	6/9	8/9	1
D	2	2	2.25	3	3.25

Based on the data, write an exponential regression equation, rounded to the nearest thousandth, to model the distance the runner is able to complete in a session as she continues through the nine-week program.

Jan 30-6:20 PM